-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_1_train_batch.py
executable file
·278 lines (244 loc) · 11.8 KB
/
_1_train_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#%%
from _0_preprocessing import train_loader,val_loader,test_loader #, x_test, y_test
import torch as tc
import gc
class Relu:
def forward(X): return tc.where(X>0,X,0)
def backward(X): return tc.where(X>0,1,0)
class Conv:
def __init__(self,f,p,s,n_C_prev,n_C_now):
device = tc.device('cuda' if tc.cuda.is_available() else 'cpu')
# filter size | padding | stride
self.f, self.p, self.s = f, p, s
self.n_C_prev, self.n_C_now = n_C_prev, n_C_now
beta = 0.001
self.F = tc.rand(n_C_now,n_C_prev,f,f,device=device)*beta*2 - beta # -range ~ range # -0.1 ~ 0.1 (0~0.2 - 0.1)
self.dF= tc.zeros_like(self.F,device=device)
self.V_F = tc.zeros_like(self.F,device=device) # momentum
def forward(self,A_prev):
self.A_prev = A_prev
self.Z = tc.conv2d(input=A_prev,weight=self.F,stride=self.s,padding=self.p) #+ self.b
return self.Z
def backward(self, dZ):
self.dF = tc.conv2d(input = self.A_prev.permute(1,0,2,3), weight = dZ.permute(1,0,2,3), stride = self.s,padding=self.p).permute(1,0,2,3)
dA_prev = tc.conv_transpose2d(input = dZ,weight = self.F,stride=self.s,padding=self.p)
return dA_prev
class BatchNorm:
def __init__(self,n_C) -> None:
device = tc.device('cuda' if tc.cuda.is_available() else 'cpu')
self.device= device
self.ini = True
self.gama = tc.ones((1,n_C,1,1),dtype=tc.float32,device=device)
self.beta = tc.zeros((1,n_C,1,1),dtype=tc.float32,device=device)
# self.running_mean_x = tc.zeros((1,n_C,1,1),dtype=tc.float32,device=device) #note: you can also set it's initial value to self.mean_x
# self.running_var_x = tc.zeros((1,n_C,1,1),dtype=tc.float32,device=device)
def update_running_variables(self,f_num,x):
if self.ini == True: # todo move it to __init__ running_mean_x = tc.zeros(1,nc,1,1)
print("ini true")
self.running_mean_x, self.running_var_x = self.mean_x, self.var_x
self.ini = False
else:
alpha = 0.9
self.running_mean_x = alpha*self.running_mean_x + (1.0-alpha)*self.mean_x
self.running_var_x = alpha*self.running_var_x + (1.0-alpha)*self.var_x
def forward(self, x ,train:bool): # x (m,16,32,32)
mm = x.shape[0]*x.shape[2]*x.shape[3]
self.mm = mm
if train:
# 1/mm*(x).sum
self.mean_x = (x).mean([0,2,3],keepdim=True) #*1,16,1,1
# 1/mm*((x-self.mean_x)**2).sum
self.var_x = (x).var([0,2,3],unbiased=False,keepdim=True) #*1,16,1,1
self.update_running_variables(x.shape[1],x)
else:
self.mean_x, self.var_x = self.running_mean_x, self.running_var_x
eps = 0.001
self.var_x += eps
# print("max x ",tc.max(x))
self.x_minus_mean = x - self.mean_x
self.x_hat = self.x_minus_mean / (self.var_x**(0.5)) #todo self.var_x ** (1/2)
# print("max x_hat",tc.max(self.x_hat))
y = self.gama * self.x_hat + self.beta
return y
def backward(self,dy):
mm = self.mm #
self.dgama = (dy*self.x_hat).sum([0,2,3],keepdim=True) # dgama for each channel
self.dbeta = (dy).sum([0,2,3],keepdim=True) # dbias for each channel
dx_hat = dy*self.gama
# 1, ch, 1, 1
std = tc.sqrt(self.var_x)
# (m,16,w,h) (1,16,1,1)
dvar_x = (-0.5*dx_hat*(self.x_minus_mean)).sum((0,2,3),keepdim=True) * (self.var_x**-1.5)
dmean_x = ( dx_hat * (-1.0/std) ).sum((0,2,3),keepdim=True)+ \
dvar_x*(-2.0*self.x_minus_mean).sum((0,2,3),keepdim=True)/mm
dx = dx_hat / std + dmean_x/mm +\
dvar_x*(2/mm)*self.x_minus_mean
return dx
class Pool:
def __init__(self,f,s) -> None:
self.f, self.s = f, s
self.pool = tc.nn.MaxPool2d(kernel_size=f,stride=s,padding=0,return_indices=True)
self.unPool = tc.nn.MaxUnpool2d(kernel_size=f,stride=s,padding=0)
def forward(self,A_prev): #!! should be Z_prev
self.A_prev_size = A_prev.size()
A, self.A_index = self.pool(A_prev)
return A
def backward(self,dA):
dA_prev = self.unPool(dA,self.A_index,output_size = self.A_prev_size)
return dA_prev
class Fc:
def __init__(self,n_prev,n_now) -> None:
device = tc.device('cuda' if tc.cuda.is_available() else 'cpu')
self.n_prev, self.n_now = n_prev, n_now
beta = 0.01
self.W = tc.rand(n_now,n_prev,device=device)*beta*2 - beta # -range ~ range # -0.1 ~ 0.1
self.b = tc.rand(n_now,1,device=device) *beta*2 - beta
self.dW, self.db = tc.zeros_like(self.W,device=device),tc.zeros_like(self.b,device=device)
self.V_W,self.V_b = tc.zeros_like(self.W,device=device),tc.zeros_like(self.b,device=device)
def forward(self, A_prev):
self.A_prev = A_prev
Z = tc.mm(self.W,A_prev) + self.b
return Z
def backward(self,dZ):
self.dW = tc.mm(dZ,self.A_prev.T) # (n_now,m)(m,n_prev) = (n_now,n_prev)
self.db = tc.sum(dZ,axis = 1).reshape(dZ.shape[0],1) # (n_now,1)
dA_prev = tc.mm((self.W).T,dZ)
return dA_prev
def forward_prop(X,ls,train=True):
X = ls['conv0'].forward(X) # 0: conv0 # Z0 (m,3,32,32)
X = ls['bn0'].forward(X,train)
X = Relu.forward(X)
X = ls['pool1'].forward(X) # 1: pool0
X = ls['conv2'].forward(X) # 2: conv1
X = ls['bn2'].forward(X,train)
X = Relu.forward(X)
X = ls['pool3'].forward(X)
X = ls['conv4'].forward(X) # Z0 = F0 A_prev0 + b0
X = ls['bn4'].forward(X,train)
X = Relu.forward(X)
X = ls['pool5'].forward(X) # A5 (m, ch_now, f_w, f_h)
# X = ls['conv6'].forward(X) # Z0 = F0 A_prev0 + b0
# X = ls['bn6'].forward(X,train)
# X = Relu.forward(X)
# X = ls['pool7'].forward(X) # A5 (m, ch_now, f_w, f_h)
#---------- 後段NN架構 ------------
m = X.shape[0]
last_shape = X.shape
X = X.reshape(m,-1).T #(ch_now*f_w*f_h, m)
X = ls['fc0'].forward(X)
Aout = tc.nn.functional.softmax(X,dim=0)
gc.collect()
return Aout,last_shape
def backward_prop(Aout,ls,Y_hot,last_shape):
m = Y_hot.shape[1]
#---------- 後段NN架構 ------------
dX = 1/m * (Aout - Y_hot)
dX = ls['fc0'].backward(dX)
dX = dX.T.reshape(m,last_shape[1],last_shape[2],last_shape[3])
# dX = ls['pool7'].backward(dX) #dA2(m,16,10,10)
# dX = dX*Relu.backward(ls['conv6'].Z) #dZ2(m,10,11,11)
# dX = ls['bn6'].backward(dX)
# dX = ls['conv6'].backward(dX)
dX = ls['pool5'].backward(dX) #dA2(m,16,10,10)
dX = dX*Relu.backward(ls['conv4'].Z) #dZ2(m,10,11,11)
dX = ls['bn4'].backward(dX)
dX = ls['conv4'].backward(dX)
dX = ls['pool3'].backward(dX) #dA2(m,16,10,10)
dX = dX*Relu.backward(ls['conv2'].Z) #dZ2(m,10,11,11)
dX = ls['bn2'].backward(dX)
dX = ls['conv2'].backward(dX)
dX = ls['pool1'].backward(dX) #dA1(m,6,28,28)
dX = dX*Relu.backward(ls['conv0'].Z) #dZ1(m,6,28,28)
dX = ls['bn0'].backward(dX)
_ = ls['conv0'].backward(dX)
gc.collect()
return
def update_params(lr, ls,m,reg):
beta = 0.9
for key in ls:
if(type(ls[key]) == Fc):
ls[key].V_W = beta * ls[key].V_W + (1-beta) * ls[key].dW
ls[key].V_b = beta * ls[key].V_b + (1-beta) * ls[key].db
ls[key].W = ls[key].W*(1-lr*reg/m) - lr * ls[key].V_W
ls[key].b = ls[key].b*(1-lr*reg/m) - lr * ls[key].V_b
# ls[key].W = ls[key].W*(1-lr*reg/m) - lr * ls[key].dW
# ls[key].b = ls[key].b*(1-lr*reg/m) - lr * ls[key].db
elif(type(ls[key]) == Conv):
ls[key].V_F = beta * ls[key].V_F + (1-beta) * ls[key].dF
ls[key].F = ls[key].F*(1-lr*reg/m) - lr * ls[key].V_F
# print(tc.min(ls[key].dF),tc.max(ls[key].dF))
# ls[key].F = ls[key].F*(1-lr*reg/m) - lr * ls[key].dF
elif(type(ls[key]) == BatchNorm):
ls[key].gama = ls[key].gama - lr * ls[key].dgama #*0.01
ls[key].beta = ls[key].beta - lr * ls[key].dbeta #*0.01
return
from utils.gpu import gpu_acceleration
loss_list = []
acc_list = {"train":[],"valid":[],"test":[]}
def get_accu(Aout,y_labels,data_type,iteration,acc_list):
A_pred = tc.argmax(Aout,axis = 0)
acc_num, tot= tc.sum(A_pred.cpu() == y_labels), len(y_labels)
print(f"{data_type} acc {(acc_num/tot).item()*100:.1f} {acc_num}/{tot}")
acc_list[data_type].append([iteration,(acc_num/tot).item()])
return
def start_training(train_loader,ls,epochs,lr,reg=3):
iteration = 0
for epoch in range(epochs):
for i, (X,y_labels) in enumerate(train_loader):
# print("iter", i)
iteration+=1
m = X.shape[0]
Y_hot = tc.nn.functional.one_hot(y_labels,num_classes=10).T #Y_hot: (10,m)
X,Y_hot = gpu_acceleration(X,Y_hot)
Aout,last_shape = forward_prop(X,ls,train=True)
backward_prop(Aout,ls,Y_hot,last_shape)
update_params(lr, ls,m,reg)
if ((epoch % 1) == 0 or (epoch == epochs-1)) and (i%20==0):
print(f"-----------epoch {epoch}/{epochs}---i {i}/{len(train_loader)}------")
loss = - tc.sum(Y_hot * tc.log(Aout))/Aout.shape[1]
# print(f"loss {loss.cpu().item()}")
loss_list.append([iteration,loss.cpu().item()])
get_accu(Aout,y_labels,"train",iteration,acc_list)
X,y_labels = next(iter(val_loader))
Aout, _ = forward_prop(X.cuda(),ls,train=False)
get_accu(Aout,y_labels,"valid",iteration,acc_list)
X,y_labels = next(iter(test_loader))
Aout, _ = forward_prop(X.cuda(),ls,train=False)
get_accu(Aout,y_labels,"test",iteration,acc_list)
return
if __name__ == "__main__":
layer_list = {
'conv0': Conv(f=5,p=2,s=1,n_C_prev=3,n_C_now=32), #? layer0 (m,3,32,32) --> (m,32,32,32)
'bn0' : BatchNorm(n_C=32),
'pool1': Pool(f=2,s=2), # layer1 (m,6,32,32) --> (m,6,16,16)
'conv2': Conv(f=5,p=0,s=1,n_C_prev=32,n_C_now=64), #? layer2 (m,32,16,16) --> (m,64,12,12)
'bn2' : BatchNorm(n_C=64),
'pool3': Pool(f=2,s=2), # layer3 (m,16,12,12) --> (m,16,6,6)
'conv4': Conv(f=5,p=0,s=1,n_C_prev=64,n_C_now=128),#layer (m,64,6,6) --> (m,128,2,2)
'bn4' : BatchNorm(n_C=128),
'pool5': Pool(f=2,s=2),# layer5 (m,32,2,2) --> (m,32,1,1)
# 'conv6': Conv(f=5,p=2,s=1,n_C_prev=64,n_C_now=128),#layer (m,128,4,4) --> (m,256,4,4)
# 'bn6' : BatchNorm(n_C=128),
# 'pool7': Pool(f=2,s=2), # 256,2,2
# 'conv8': Conv(f=5,p=2,s=1,n_C_prev=512,n_C_now=256),#layer (m,128,4,4) --> (m,256,4,4)
# 'bn8' : BatchNorm(n_C=256),
# 'pool9': Pool(f=2,s=2), # 256,2,2
'fc0' : Fc(n_prev=128*1*1,n_now=10), #* layer6 (32,m) --> (10,m)
}
import time, os, pickle
start = time.time() # 25
start_training(train_loader,layer_list,epochs=3,lr=0.10,reg=0)
end = time.time()
duration = int(end - start)
print("duration",duration)
cnnNetInfo = {
'file': 'v2_modulization',
'loss_list': loss_list, 'acc_list': acc_list,
'training_time(s)': duration,
'layerList': layer_list
}
outdir = './_train_ML_data/train_W_b_result'
if not os.path.exists(outdir): os.makedirs(outdir)
with open(f"{outdir}/v2_modulization.pkl",'wb') as cnnInfoPickle:
pickle.dump(cnnNetInfo,cnnInfoPickle)
print("Piiiiiclke")