-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
60 lines (51 loc) · 2.17 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
from io import open
import torch
class Dictionary(object):
def __init__(self):
self.word2idx = {'<unk>': 0, '<pad>': 1, '<eos>': 2}
self.idx2word = ['<unk>', '<pad>', '<eos>']
self.vocab_set = set(self.idx2word)
def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.vocab_set.add(word)
self.word2idx[word] = len(self.idx2word) - 1
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
class Corpus(object):
def __init__(self, path, train_file, valid_file, test_file, load_vocab=False, vocab_file='vocab.pth'):
self.dictionary = Dictionary()
if load_vocab:
with open(os.path.join(path, vocab_file), 'rb') as f:
word2idx, idx2word = torch.load(f)
self.dictionary.word2idx = word2idx
self.dictionary.idx2word = idx2word
self.dictionary.vocab_set = set(idx2word)
self.train = self.tokenize(os.path.join(path, train_file), skip_dict=load_vocab)
self.valid = self.tokenize(os.path.join(path, valid_file), skip_dict=load_vocab)
self.test = self.tokenize(os.path.join(path, test_file), skip_dict=load_vocab)
def build_dict(self, path):
"""Tokenizes a text file."""
assert os.path.exists(path)
# Add words to the dictionary
with open(path, 'r', encoding="utf8") as f:
for line in f:
words = line.split() + ['<eos>']
for word in words:
self.dictionary.add_word(word)
def tokenize(self, path, skip_dict=False):
if not skip_dict:
self.build_dict(path)
# Tokenize file content
with open(path, 'r', encoding="utf8") as f:
idss = []
for line in f:
words = line.split() + ['<eos>']
ids = []
for word in words:
ids.append(self.dictionary.word2idx[word if word in self.dictionary.vocab_set else '<unk>'])
idss.append(torch.tensor(ids).type(torch.int64))
ids = torch.cat(idss)
return ids