-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscraper.py
316 lines (272 loc) · 10.7 KB
/
scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from selenium import webdriver
from selenium.webdriver.support.ui import Select
from selenium.common.exceptions import NoSuchElementException
from selenium.webdriver.common.by import By
from bs4 import BeautifulSoup
import csv
import pandas as pd
from skills import Skills
from pprint import pprint
from datetime import datetime
# Scrape users
def scrape():
content = driver.page_source
soup = BeautifulSoup(content, "html.parser")
results = soup.find_all("table", class_="regular")[1]
for item in results.tbody.find_all("tr")[2:]:
username = item.find_all("td", class_="clan_td clan_rsn2")
if not username:
td = soup.new_tag('td')
td.string = "None"
username.append(td)
usr.append(username[0].get_text())
# Click to the next page
def next_page():
link = driver.find_element_by_link_text("next »")
link.click()
def replace_space(url_runeclan, list):
index = 0
while index < len(list):
list[index] = list[index].replace(' ', '+')
list[index] = url_runeclan + list[index]
index += 1
return list
def calculate(obj_stats):
# Calculate skills based on rules then add to new total dxp gained
total_xp = 0.0
halved_xp = 0.0
doubled_xp = 0.0
normal_xp = 0.0
tripled_xp = 0.0
for item in obj_stats:
if item.skill_name in normal_skills:
normal_xp = item.dxp_gained
total_xp += normal_xp
elif item.skill_name in doubled_skills:
doubled_xp = item.dxp_gained * 2.0
total_xp += doubled_xp
elif item.skill_name in halved_skills:
halved_xp = item.dxp_gained / 2.0
total_xp += halved_xp
elif item.skill_name in tripled_skills:
tripled_xp = item.dxp_gained * 3.0
total_xp += tripled_xp
return total_xp
'''
Go through each participant's runeclan page.
Scrape skill names and dxp gained.
Calculate each skill using rules applied and new total dxp gained.
'''
def scrape_data(links):
for link in links:
skill_stat = []
user_stat = []
obj_stats = []
driver.get(link)
try:
driver.find_element(by=By.NAME, value="dxp_col")
# "click" on option dropdown and select dxp gains
select = Select(driver.find_element(by=By.NAME, value="dxp_col"))
select.select_by_visible_text('DXP Live')
# Scrape skills and dxp gained
content = driver.page_source
soup = BeautifulSoup(content, "html.parser")
# User name
name = soup.find_all("span", class_="xp_tracker_hname")[0]
name_text = name.get_text()
# Dxp
results = soup.find_all("table", class_="regular")[0]
for item in results.tbody.find_all("tr")[2:]:
skill = item.find_all("td", class_="xp_tracker_skill")[0]
num = item.find_all(
"td", class_="xp_tracker_gain xp_tracker_pos")
if not num:
td = soup.new_tag('td')
td.string = "0"
num.append(td)
# Skill
user_stat.append(skill.get_text())
# Dxp gained in skill
num_text = num[0].get_text()
num_no_comma = num_text.replace(',', '')
num_float = float(num_no_comma)
user_stat.append(num_float)
# Store each skill with xp gained in a class
index = 0
while index < len(user_stat):
obj_stats.append(
Skills(user_stat[index], user_stat[index + 1]))
index += 2
total_xp = calculate(obj_stats)
# Store user name and new total dxp gained in dict then append dict to list
new_dxp_gains_dict = {'Name': name_text, 'DXP Gained': total_xp}
new_dxp_gains.append(new_dxp_gains_dict)
except NoSuchElementException:
print(f"Private Profile: {link}. Skipping...")
pass
def read_csv():
# Open file of clan roster and append info to list of dicts
with open('total_lvls.csv', newline='', encoding='utf-8-sig') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
total_lvls.append(dict(row))
# Remove commas in numbers for calculations and convert string numbers to int type
def remove_commas(list):
index = 0
while index < len(list):
list[index]['Total lvl'] = int(
list[index]['Total lvl'].replace(',', ''))
# list[index]['Total lvl'] = int(list[index]['Total lvl'])
index += 1
return list
'''
Check if results name matches clan roster then is placed to appropriate
bracket based on total lvl from clan roster list.
Check to see who participated in dxp.
'''
def brackets(dxp, totals):
for i in range(0, len(dxp)):
for j in range(0, len(totals)):
if dxp[i]['Name'] == totals[j]['Name']:
if totals[j]['Total lvl'] < 2000:
bracketA.append(dxp[i])
elif totals[j]['Total lvl'] >= 2001 and totals[j]['Total lvl'] < 2300:
bracketB.append(dxp[i])
elif totals[j]['Total lvl'] >= 2301 and totals[j]['Total lvl'] < 2600:
bracketC.append(dxp[i])
elif totals[j]['Total lvl'] >= 2601 and totals[j]['Total lvl'] < 2700:
bracketD.append(dxp[i])
elif totals[j]['Total lvl'] >= 2701 and totals[j]['Total lvl'] < 2800:
bracketE.append(dxp[i])
elif totals[j]['Total lvl'] >= 2801 and totals[j]['Total lvl'] < 2850:
bracketF.append(dxp[i])
elif totals[j]['Total lvl'] >= 2851:
bracketG.append(dxp[i])
if __name__ == '__main__':
# driver = webdriver.Chrome()
# PATH = "F:\Downloads\chromedriver_win32 (2)/chromedriver"
driver = webdriver.Chrome('/Users/jeaniechea/Documents/python_data/etk_dxp/Q2/windows/chromedriver')
url = "https://www.runeclan.com/clan/Elite_Team_Killerz/xp-tracker?skill=2&criteria_set1=double_xp_weekend"
url_runeclan = "https://www.runeclan.com/user/"
driver.get(url)
bracketA = []
bracketB = []
bracketC = []
bracketD = []
bracketE = []
bracketF = []
bracketG = []
halved_skills = [
'Attack',
'Defence',
'Strength',
'Constitution',
'Ranged',
'Magic',
'Summoning',
'Herblore',
'Farming',
'Invention',
'Archaeology',
'Dungeoneering'
]
normal_skills = [
'Fletching',
'Crafting',
'Thieving'
]
doubled_skills = [
'Hunter',
'Smithing',
'Firemaking',
'Prayer',
'Cooking',
'Slayer',
'Construction'
]
tripled_skills = [
'Agility',
'Divination',
'Fishing',
'Woodcutting',
'Mining',
'Runecrafting'
]
total_lvls = []
usr = []
new_dxp_gains = []
read_csv()
scrape()
# next_page()
# scrape()
links = [ele for ele in usr if ele != 'None']
runeclan_links = replace_space(url_runeclan, links)
scrape_data(runeclan_links)
driver.quit()
totals = remove_commas(total_lvls)
brackets(new_dxp_gains, totals)
# sort dictionaries by DXP Gained in descending order
bracketA_data_ordered = sorted(
bracketA, key=lambda item: item['DXP Gained'], reverse=True)
bracketB_data_ordered = sorted(
bracketB, key=lambda item: item['DXP Gained'], reverse=True)
bracketC_data_ordered = sorted(
bracketC, key=lambda item: item['DXP Gained'], reverse=True)
bracketD_data_ordered = sorted(
bracketD, key=lambda item: item['DXP Gained'], reverse=True)
bracketE_data_ordered = sorted(
bracketE, key=lambda item: item['DXP Gained'], reverse=True)
bracketF_data_ordered = sorted(
bracketF, key=lambda item: item['DXP Gained'], reverse=True)
bracketG_data_ordered = sorted(
bracketG, key=lambda item: item['DXP Gained'], reverse=True)
pprint(bracketA_data_ordered)
pprint(bracketB_data_ordered)
pprint(bracketC_data_ordered)
pprint(bracketD_data_ordered)
pprint(bracketE_data_ordered)
pprint(bracketF_data_ordered)
pprint(bracketG_data_ordered)
# bracket data as dataframes for better viewing
bracketA_data = pd.DataFrame.from_dict(
bracketA_data_ordered, orient='columns')
bracketB_data = pd.DataFrame.from_dict(
bracketB_data_ordered, orient='columns')
bracketC_data = pd.DataFrame.from_dict(
bracketC_data_ordered, orient='columns')
bracketD_data = pd.DataFrame.from_dict(
bracketD_data_ordered, orient='columns')
bracketE_data = pd.DataFrame.from_dict(
bracketE_data_ordered, orient='columns')
bracketF_data = pd.DataFrame.from_dict(
bracketF_data_ordered, orient='columns')
bracketG_data = pd.DataFrame.from_dict(
bracketG_data_ordered, orient='columns')
bracketA_data['Rank'] = range(1, len(bracketA_data) + 1)
bracketA_data = bracketA_data[list(('Rank', 'Name', 'DXP Gained'))]
bracketB_data['Rank'] = range(1, len(bracketB_data) + 1)
bracketB_data = bracketB_data[list(('Rank', 'Name', 'DXP Gained'))]
bracketC_data['Rank'] = range(1, len(bracketC_data) + 1)
bracketC_data = bracketC_data[list(('Rank', 'Name', 'DXP Gained'))]
bracketD_data['Rank'] = range(1, len(bracketD_data) + 1)
bracketD_data = bracketD_data[list(('Rank', 'Name', 'DXP Gained'))]
bracketE_data['Rank'] = range(1, len(bracketE_data) + 1)
bracketE_data = bracketE_data[list(('Rank', 'Name', 'DXP Gained'))]
bracketF_data['Rank'] = range(1, len(bracketF_data) + 1)
bracketF_data = bracketF_data[list(('Rank', 'Name', 'DXP Gained'))]
bracketG_data['Rank'] = range(1, len(bracketG_data) + 1)
bracketG_data = bracketG_data[list(('Rank', 'Name', 'DXP Gained'))]
date = datetime.now().strftime("%m_%d_%Y")
date_string = "results_" + date + ".xlsx"
with pd.ExcelWriter(date_string) as writer:
bracketA_data.to_excel(writer, sheet_name="Bracket A < 2k Total")
bracketB_data.to_excel(writer, sheet_name="Bracket B 2k - 2.3k Total")
bracketC_data.to_excel(
writer, sheet_name="Bracket C 2.3k - 2.6k Total")
bracketD_data.to_excel(
writer, sheet_name="Bracket D 2.6k - 2.7k Total")
bracketE_data.to_excel(
writer, sheet_name="Bracket E 2.7k - 2.8k Total")
bracketF_data.to_excel(
writer, sheet_name="Bracket F 2.8k - 2850 Total")
bracketG_data.to_excel(writer, sheet_name="Bracket G > 2850 Total")