-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
130 lines (107 loc) · 4.28 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.categorical import Categorical
import torch_ac
# Function from https://github.com/ikostrikov/pytorch-a2c-ppo-acktr/blob/master/model.py
def init_params(m):
classname = m.__class__.__name__
if classname.find("Linear") != -1:
m.weight.data.normal_(0, 1)
m.weight.data *= 1 / torch.sqrt(m.weight.data.pow(2).sum(1, keepdim=True))
if m.bias is not None:
m.bias.data.fill_(0)
class ACModel(nn.Module, torch_ac.RecurrentACModel):
def __init__(self, obs_space, action_space, acsize=128, activation='tanh'):
super().__init__()
self.rnn_input_size = 0
# Define image embedding
if 'image' in obs_space.keys():
self.image_embedding_size = 256
image_conv = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=8, stride=4, padding=0),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),
nn.ReLU(),
nn.Flatten(),
)
# Compute shape by doing one forward pass
with torch.no_grad():
x, y, z = obs_space['image']
n_flatten = image_conv(
torch.zeros((z, x, y)).unsqueeze(0)
).shape[1]
self.image_extractor = nn.Sequential(
image_conv,
nn.Linear(n_flatten, self.image_embedding_size),
nn.ReLU()
)
self.rnn_input_size += self.image_embedding_size
# Define taskenc embedding
if 'task_enc' in obs_space.keys():
self.taskenc_extractor = nn.Flatten()
self.rnn_input_size += np.product(obs_space['task_enc'])
# Define memory
self.memory_rnn = nn.LSTMCell(self.rnn_input_size, self.semi_memory_size)
# Resize image embedding
self.embedding_size = self.semi_memory_size
if activation == 'tanh':
# Define actor's model
self.actor = nn.Sequential(
nn.Linear(self.embedding_size, acsize),
nn.Tanh(),
nn.Linear(acsize, action_space.n)
)
# Define critic's model
self.critic = nn.Sequential(
nn.Linear(self.embedding_size, acsize),
nn.Tanh(),
nn.Linear(acsize, 1)
)
elif activation == 'relu':
# Define actor's model
self.actor = nn.Sequential(
nn.Linear(self.embedding_size, acsize),
nn.ReLU(),
nn.Linear(acsize, action_space.n)
)
# Define critic's model
self.critic = nn.Sequential(
nn.Linear(self.embedding_size, acsize),
nn.ReLU(),
nn.Linear(acsize, 1)
)
# Initialize parameters correctly
self.apply(init_params)
@property
def memory_size(self):
return 2 * self.semi_memory_size
@property
def semi_memory_size(self):
try:
return self.image_embedding_size
except:
return self.rnn_input_size
def forward(self, obs, memory):
x_inputs = []
if 'image' in obs.keys():
x_image = obs.image.transpose(1, 3).transpose(2, 3)
x_image = self.image_extractor(x_image)
x_image = x_image.reshape(x_image.shape[0], -1)
x_inputs.append(x_image)
if 'task_enc' in obs.keys():
x_taskenc = obs.task_enc
x_taskenc = self.taskenc_extractor(x_taskenc)
x_taskenc = x_taskenc.reshape(x_taskenc.shape[0], -1)
x_inputs.append(x_taskenc)
x = torch.concat(x_inputs, axis=-1)
hidden = (memory[:, :self.semi_memory_size], memory[:, self.semi_memory_size:])
hidden = self.memory_rnn(x, hidden)
embedding = hidden[0]
memory = torch.cat(hidden, dim=1)
x = self.actor(embedding)
dist = Categorical(logits=F.log_softmax(x, dim=1))
x = self.critic(embedding)
value = x.squeeze(1)
return dist, value, memory