-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tinyimagenet.py
110 lines (87 loc) · 3.64 KB
/
test_tinyimagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import sys
import numpy as np
import torch
import utils
import glob
import random
import logging
import argparse
import torch.nn as nn
import genotypes
import torch.utils
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from model import NetworkImageNet as Network
parser = argparse.ArgumentParser("imagenet")
parser.add_argument('--data', type=str, default='../data/tiny-imagenet', help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--report_freq', type=float, default=100, help='report frequency')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--init_channels', type=int, default=48, help='num of init channels')
parser.add_argument('--layers', type=int, default=14, help='total number of layers')
parser.add_argument('--model_path', type=str, default='EXP/model.pt', help='path of pretrained model')
parser.add_argument('--auxiliary', action='store_true', default=False, help='use auxiliary tower')
parser.add_argument('--drop_path_prob', type=float, default=0, help='drop path probability')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--arch', type=str, default='NASP', help='which architecture to use')
args = parser.parse_args()
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
CLASSES = 200
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
np.random.seed(args.seed)
torch.cuda.set_device(args.gpu)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled=True
torch.cuda.manual_seed(args.seed)
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
genotype = eval("genotypes.%s" % args.arch)
model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype)
model = model.cuda()
model.load_state_dict(torch.load(args.model_path)['state_dict'])
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
validdir = os.path.join(args.data, 'valid')
normalize = transforms.Normalize(mean=[0.4802, 0.4481, 0.3975], std=[0.2302, 0.2265, 0.2262])
valid_data = dset.ImageFolder(
validdir,
transforms.Compose([
transforms.ToTensor(),
normalize,
]))
valid_queue = torch.utils.data.DataLoader(
valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4)
model.drop_path_prob = args.drop_path_prob
valid_acc_top1, valid_acc_top5, valid_obj = infer(valid_queue, model, criterion)
logging.info('valid_acc_top1 %f', valid_acc_top1)
logging.info('valid_acc_top5 %f', valid_acc_top5)
def infer(valid_queue, model, criterion):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
model.eval()
for step, (input, target) in enumerate(valid_queue):
input = Variable(input, volatile=True).cuda()
target = Variable(target, volatile=True).cuda(async=True)
logits, _ = model(input)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data[0], n)
top1.update(prec1.data[0], n)
top5.update(prec5.data[0], n)
if step % args.report_freq == 0:
logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, top5.avg, objs.avg
if __name__ == '__main__':
main()