-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmm_formula.py
396 lines (323 loc) · 9.82 KB
/
mm_formula.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def brace_formula(fstr):
if "+" in fstr and "(" != fstr[0] and ")" != fstr[1]:
return f"({fstr})"
return fstr
class Matrix:
def __init__(self, prefix="q", size=(3, 3), mat=None):
if mat is not None:
self.mat = mat
self.size = (len(mat), len(mat[0]))
return
assert len(size) == 2
res = []
for i in range(size[0]):
row = []
for j in range(size[1]):
row.append(f"{prefix}{i}{j}")
res.append(row)
self.mat = res
self.size = size
def __str__(self) -> str:
r = []
for row in self.mat:
r.append(f"| {' '.join(row)} |")
return "\n".join(r) + "\n"
@property
def T(self):
res = []
for j in range(self.size[1]):
row = []
for i in range(self.size[0]):
row.append(self.mat[i][j])
res.append(row)
return Matrix(mat=res)
def mm(self, m2):
res = []
for i in range(self.size[0]):
row = []
for j in range(m2.size[1]):
_sum = []
for k in range(m2.size[0]):
_sum.append(
f"{brace_formula(self.mat[i][k])}{brace_formula(m2.mat[k][j])}"
)
row.append("+".join(_sum))
res.append(row)
return Matrix(mat=res)
def sum(self, axis):
res = []
if axis == 0:
row = []
for j in range(self.size[1]):
_sum = []
for i in range(self.size[0]):
_sum.append(self.mat[i][j])
row.append("+".join(_sum))
res.append(row)
elif axis == 1:
for i in range(self.size[0]):
row = []
_sum = []
for j in range(self.size[1]):
_sum.append(self.mat[i][j])
row.append("+".join(_sum))
res.append(row)
else:
raise NotImplementedError
return Matrix(mat=res)
def __getitem__(self, index):
return self.mat[index]
def element_wise(self, m2, sign):
res = []
m2 = Broadcast2Matrix(m2, self.size)
brace = brace_formula if sign in ["/", "*"] else (lambda x: x)
for i in range(self.size[0]):
row = []
for j in range(self.size[1]):
row.append(f"{brace(self.mat[i][j])}{sign}{brace(m2[i][j])}")
res.append(row)
return Matrix(mat=res)
def element_wise_div(self, m2):
return self.element_wise(m2, "/")
class Broadcast2Matrix:
def __init__(self, mat, size) -> None:
if isinstance(mat, str):
self.get_item = lambda i: mat
return
if isinstance(mat, list):
assert isinstance(mat[0], str)
self.get_item = lambda i: mat[0]
return
assert isinstance(mat, Matrix)
assert len(size) == len(mat.size)
if mat.size[0] == 1:
self.get_item = lambda i: mat[0]
elif mat.size[1] == 1:
def _get_item(i):
return Broadcast2Matrix(mat[i], (mat.size[1],))
self.get_item = _get_item
else:
self.get_item = mat.__getitem__
def __getitem__(self, index):
return self.get_item(index)
def expand_multiply_brace(formu):
def _expand(_formu):
# if depth <= 0:
# return formu
bst = _formu.index("(")
assert bst > 0
assert _formu[-1] == ")"
res = []
ele = _formu[:bst]
if ele[-1] in ("/", "-", "+"):
return _formu
st = bst + 1
bunfinish = 0
for i in range(bst + 1, len(_formu) - 2):
c = _formu[i]
if c == "(":
bunfinish += 1
elif c == ")":
bunfinish -= 1
elif bunfinish == 0 and (c == "+" or c == "-"):
res += f"{ele}{_formu[st:i]}{c}"
st = i + 1
res.append(f"{ele}{_formu[st:len(_formu)-1]}")
return "".join(res)
res = []
st = 0
bunfinish = 0
for i in range(len(formu)):
c = formu[i]
if c == "(":
bunfinish += 1
elif c == ")":
bunfinish -= 1
elif bunfinish == 0 and (c == "+" or c == "-"):
end = i
res.append(_expand(formu[st:end]))
res.append(c)
st = i + 1
if i == len(formu) - 1:
assert bunfinish == 0
end = i + 1
res.append(_expand(formu[st:end]))
return "".join(res)
def split_denominater(formu):
bunfinish = 0
for i in range(len(formu)):
c = formu[i]
if c == "(":
bunfinish += 1
elif c == ")":
bunfinish -= 1
elif bunfinish == 0 and c == "/":
return formu[:i], formu[i + 1 :]
elif bunfinish == 0 and (i == len(formu) - 1):
return formu[:i], ""
def assemble_frac(num_list, denom):
if denom != "":
denom = f"/{denom}"
if len(num_list) > 1:
return f"({''.join(num_list)}){denom}"
return f"{''.join(num_list)}{denom}"
def merge_same_denominator(formu):
denominaters = {}
first_denom = None
def _add(_formu, _last_sign, _first_denom):
num, denom = split_denominater(_formu)
if _first_denom is None:
_first_denom = denom
if denom not in denominaters:
denominaters[denom] = []
denominaters[denom].append(f"{_last_sign}{num}")
return _first_denom
last_sign = ""
st = 0
bunfinish = 0
for i in range(len(formu)):
c = formu[i]
if c == "(":
bunfinish += 1
elif c == ")":
bunfinish -= 1
elif bunfinish == 0 and (c == "+" or c == "-"):
end = i
first_denom = _add(formu[st:end], last_sign, first_denom)
last_sign = c
st = i + 1
if i == len(formu) - 1:
assert bunfinish == 0
end = i + 1
first_denom = _add(formu[st:end], last_sign, first_denom)
res = []
v = denominaters.pop(first_denom)
res.append(f"{assemble_frac(v, first_denom)}")
for k, v in denominaters.items():
if v[0][0] == "+":
sign = "+"
elif v[0][0] == "-":
sign = "-"
else:
raise NotImplementedError
v[0] = v[0][1:]
if sign == "-":
for i in range(1, len(v)):
if v[i][0] == "+":
v[i][0] = "-"
elif v[i][0] == "-":
v[i][0] = "+"
else:
raise NotImplementedError
res.append(f"{sign}{assemble_frac(v, k)}")
return "".join(res)
def get_I_hat():
q = Matrix("q", (2, 2))
print(q)
k = Matrix("k", (2, 2))
print(k)
# print(q.sum(0))
# print(q.sum(1))
O = k.mm(q.sum(0).T)
# I = q.mm(k.sum(0).T)
kj_div_Oj = k.element_wise_div(O)
print(kj_div_Oj)
kj_div_Oj_sum = kj_div_Oj.sum(0)
print(kj_div_Oj_sum)
res = q.mm(kj_div_Oj_sum.T)
print(res)
for i in range(res.size[0]):
for j in range(res.size[1]):
res.mat[i][j] = expand_multiply_brace(res.mat[i][j])
print(res)
res = res.sum(0)
for i in range(res.size[0]):
for j in range(res.size[1]):
res.mat[i][j] = merge_same_denominator(res.mat[i][j])
print(res)
def get_O_hat():
q = Matrix("q", (2, 2))
print(q)
k = Matrix("k", (2, 2))
print(k)
# print(q.sum(0))
# print(q.sum(1))
# O = k.mm(q.sum(0).T)
I = q.mm(k.sum(0).T)
qj_div_Ij = q.element_wise_div(I)
print(qj_div_Ij)
qj_div_Ij_sum = qj_div_Ij.sum(0)
print(qj_div_Ij_sum)
res = k.mm(qj_div_Ij_sum.T)
print(res)
for i in range(res.size[0]):
for j in range(res.size[1]):
res.mat[i][j] = expand_multiply_brace(res.mat[i][j])
print(res)
res = res.sum(0)
for i in range(res.size[0]):
for j in range(res.size[1]):
res.mat[i][j] = merge_same_denominator(res.mat[i][j])
print(res)
def get_biased_I():
q = Matrix("q", (2, 2))
k = Matrix("k", (2, 2))
b = Matrix("b", (2, 2))
I = q.mm(k.sum(0).T)
bsum = b.sum(1)
print(I.size)
print(bsum.size)
I_biased = I.element_wise(bsum, "+")
print(I_biased)
def get_biased_O():
q = Matrix("q", (2, 2))
k = Matrix("k", (2, 2))
b = Matrix("b", (2, 2))
O = k.mm(q.sum(0).T)
bsum = b.sum(0).T
print(O.size)
print(bsum.size)
O_biased = O.element_wise(bsum, "+")
print(O_biased)
def get_biased_I_hat():
q = Matrix("q", (2, 2))
k = Matrix("k", (2, 2))
b = Matrix("b", (2, 2))
# I = q.mm(k.sum(0).T)
# bsum = b.sum(1)
# print(I.size)
# print(bsum.size)
# I_biased = I.element_wise(bsum, "+")
# print(I_biased)
O = k.mm(q.sum(0).T)
bsum = b.sum(0).T
O = O.element_wise(bsum, "+")
kj_div_Oj = k.element_wise_div(O)
# print(kj_div_Oj)
kj_div_Oj_sum = kj_div_Oj.sum(0)
# print(kj_div_Oj_sum)
res = q.mm(kj_div_Oj_sum.T)
# b.sum(1) # [Li, 1]
# O # [Lj, 1]
I_hat_b = b.element_wise_div(O.T).sum(1)
print("THIS\n", I_hat_b)
res = res.element_wise(I_hat_b, "+")
# print(q)
# print(kj_div_Oj_sum.T)
print(res)
for i in range(res.size[0]):
for j in range(res.size[1]):
res.mat[i][j] = expand_multiply_brace(res.mat[i][j])
print(res)
res = res.sum(0)
for i in range(res.size[0]):
for j in range(res.size[1]):
res.mat[i][j] = merge_same_denominator(res.mat[i][j])
print(res)
if __name__ == "__main__":
# get_I_hat()
# get_O_hat()
# b = Matrix("b", (2, 2))
# get_biased_I()
# get_biased_O()
get_biased_I_hat()