forked from g3n/engine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector3.go
685 lines (558 loc) · 16.1 KB
/
vector3.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
// Copyright 2016 The G3N Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math32
// Vector3 is a 3D vector/point with X, Y and Z components.
type Vector3 struct {
X float32
Y float32
Z float32
}
// NewVector3 creates and returns a pointer to a new Vector3 with
// the specified x, y and y components
func NewVector3(x, y, z float32) *Vector3 {
return &Vector3{X: x, Y: y, Z: z}
}
// NewVec3 creates and returns a pointer to a new zero-ed Vector3.
func NewVec3() *Vector3 {
return &Vector3{X: 0, Y: 0, Z: 0}
}
// Set sets this vector X, Y and Z components.
// Returns the pointer to this updated vector.
func (v *Vector3) Set(x, y, z float32) *Vector3 {
v.X = x
v.Y = y
v.Z = z
return v
}
// SetX sets this vector X component.
// Returns the pointer to this updated Vector.
func (v *Vector3) SetX(x float32) *Vector3 {
v.X = x
return v
}
// SetY sets this vector Y component.
// Returns the pointer to this updated vector.
func (v *Vector3) SetY(y float32) *Vector3 {
v.Y = y
return v
}
// SetZ sets this vector Z component.
// Returns the pointer to this updated vector.
func (v *Vector3) SetZ(z float32) *Vector3 {
v.Z = z
return v
}
// SetComponent sets this vector component value by its index: 0 for X, 1 for Y, 2 for Z.
// Returns the pointer to this updated vector
func (v *Vector3) SetComponent(index int, value float32) {
switch index {
case 0:
v.X = value
case 1:
v.Y = value
case 2:
v.Z = value
default:
panic("index is out of range: ")
}
}
// Component returns this vector component by its index: 0 for X, 1 for Y, 2 for Z.
func (v *Vector3) Component(index int) float32 {
switch index {
case 0:
return v.X
case 1:
return v.Y
case 2:
return v.Z
default:
panic("index is out of range")
}
}
// SetByName sets this vector component value by its case insensitive name: "x", "y", or "z".
func (v *Vector3) SetByName(name string, value float32) {
switch name {
case "x", "X":
v.X = value
case "y", "Y":
v.Y = value
case "z", "Z":
v.Z = value
default:
panic("Invalid Vector3 component name: " + name)
}
}
// Zero sets this vector X, Y and Z components to be zero.
// Returns the pointer to this updated vector.
func (v *Vector3) Zero() *Vector3 {
v.X = 0
v.Y = 0
v.Z = 0
return v
}
// Copy copies other vector to this one.
// It is equivalent to: *v = *other.
// Returns the pointer to this updated vector.
func (v *Vector3) Copy(other *Vector3) *Vector3 {
*v = *other
return v
}
// Add adds other vector to this one.
// Returns the pointer to this updated vector.
func (v *Vector3) Add(other *Vector3) *Vector3 {
v.X += other.X
v.Y += other.Y
v.Z += other.Z
return v
}
// AddScalar adds scalar s to each component of this vector.
// Returns the pointer to this updated vector.
func (v *Vector3) AddScalar(s float32) *Vector3 {
v.X += s
v.Y += s
v.Z += s
return v
}
// AddVectors adds vectors a and b to this one.
// Returns the pointer to this updated vector.
func (v *Vector3) AddVectors(a, b *Vector3) *Vector3 {
v.X = a.X + b.X
v.Y = a.Y + b.Y
v.Z = a.Z + b.Z
return v
}
// Sub subtracts other vector from this one.
// Returns the pointer to this updated vector.
func (v *Vector3) Sub(other *Vector3) *Vector3 {
v.X -= other.X
v.Y -= other.Y
v.Z -= other.Z
return v
}
// SubScalar subtracts scalar s from each component of this vector.
// Returns the pointer to this updated vector.
func (v *Vector3) SubScalar(s float32) *Vector3 {
v.X -= s
v.Y -= s
v.Z -= s
return v
}
// SubVectors sets this vector to a - b.
// Returns the pointer to this updated vector.
func (v *Vector3) SubVectors(a, b *Vector3) *Vector3 {
v.X = a.X - b.X
v.Y = a.Y - b.Y
v.Z = a.Z - b.Z
return v
}
// Multiply multiplies each component of this vector by the corresponding one from other vector.
// Returns the pointer to this updated vector.
func (v *Vector3) Multiply(other *Vector3) *Vector3 {
v.X *= other.X
v.Y *= other.Y
v.Z *= other.Z
return v
}
// MultiplyScalar multiplies each component of this vector by the scalar s.
// Returns the pointer to this updated vector.
func (v *Vector3) MultiplyScalar(s float32) *Vector3 {
v.X *= s
v.Y *= s
v.Z *= s
return v
}
// Divide divides each component of this vector by the corresponding one from other vector.
// Returns the pointer to this updated vector
func (v *Vector3) Divide(other *Vector3) *Vector3 {
v.X /= other.X
v.Y /= other.Y
v.Z /= other.Z
return v
}
// DivideScalar divides each component of this vector by the scalar s.
// If scalar is zero, sets this vector to zero.
// Returns the pointer to this updated vector.
func (v *Vector3) DivideScalar(scalar float32) *Vector3 {
if scalar != 0 {
invScalar := 1 / scalar
v.X *= invScalar
v.Y *= invScalar
v.Z *= invScalar
} else {
v.X = 0
v.Y = 0
v.Z = 0
}
return v
}
// Min sets this vector components to the minimum values of itself and other vector.
// Returns the pointer to this updated vector.
func (v *Vector3) Min(other *Vector3) *Vector3 {
if v.X > other.X {
v.X = other.X
}
if v.Y > other.Y {
v.Y = other.Y
}
if v.Z > other.Z {
v.Z = other.Z
}
return v
}
// Max sets this vector components to the maximum value of itself and other vector.
// Returns the pointer to this updated vector.
func (v *Vector3) Max(other *Vector3) *Vector3 {
if v.X < other.X {
v.X = other.X
}
if v.Y < other.Y {
v.Y = other.Y
}
if v.Z < other.Z {
v.Z = other.Z
}
return v
}
// Clamp sets this vector components to be no less than the corresponding components of min
// and not greater than the corresponding component of max.
// Assumes min < max, if this assumption isn't true it will not operate correctly.
// Returns the pointer to this updated vector.
func (v *Vector3) Clamp(min, max *Vector3) *Vector3 {
if v.X < min.X {
v.X = min.X
} else if v.X > max.X {
v.X = max.X
}
if v.Y < min.Y {
v.Y = min.Y
} else if v.Y > max.Y {
v.Y = max.Y
}
if v.Z < min.Z {
v.Z = min.Z
} else if v.Z > max.Z {
v.Z = max.Z
}
return v
}
// ClampScalar sets this vector components to be no less than minVal and not greater than maxVal.
// Returns the pointer to this updated vector.
func (v *Vector3) ClampScalar(minVal, maxVal float32) *Vector3 {
min := NewVector3(minVal, minVal, minVal)
max := NewVector3(maxVal, maxVal, maxVal)
return v.Clamp(min, max)
}
// Floor applies math32.Floor() to each of this vector's components.
// Returns the pointer to this updated vector.
func (v *Vector3) Floor() *Vector3 {
v.X = Floor(v.X)
v.Y = Floor(v.Y)
v.Z = Floor(v.Z)
return v
}
// Ceil applies math32.Ceil() to each of this vector's components.
// Returns the pointer to this updated vector.
func (v *Vector3) Ceil() *Vector3 {
v.X = Ceil(v.X)
v.Y = Ceil(v.Y)
v.Z = Ceil(v.Z)
return v
}
// Round rounds each of this vector's components.
// Returns the pointer to this updated vector.
func (v *Vector3) Round() *Vector3 {
v.X = Floor(v.X + 0.5)
v.Y = Floor(v.Y + 0.5)
v.Z = Floor(v.Z + 0.5)
return v
}
// Negate negates each of this vector's components.
// Returns the pointer to this updated vector.
func (v *Vector3) Negate() *Vector3 {
v.X = -v.X
v.Y = -v.Y
v.Z = -v.Z
return v
}
// Dot returns the dot product of this vector with other.
// None of the vectors are changed.
func (v *Vector3) Dot(other *Vector3) float32 {
return v.X*other.X + v.Y*other.Y + v.Z*other.Z
}
// LengthSq returns the length squared of this vector.
// LengthSq can be used to compare vectors' lengths without the need to perform a square root.
func (v *Vector3) LengthSq() float32 {
return v.X*v.X + v.Y*v.Y + v.Z*v.Z
}
// Length returns the length of this vector.
func (v *Vector3) Length() float32 {
return Sqrt(v.X*v.X + v.Y*v.Y + v.Z*v.Z)
}
// Normalize normalizes this vector so its length will be 1.
// Returns the pointer to this updated vector.
func (v *Vector3) Normalize() *Vector3 {
return v.DivideScalar(v.Length())
}
// DistanceTo returns the distance of this point to other.
func (v *Vector3) DistanceTo(other *Vector3) float32 {
return Sqrt(v.DistanceToSquared(other))
}
// DistanceToSquared returns the distance squared of this point to other.
func (v *Vector3) DistanceToSquared(other *Vector3) float32 {
dx := v.X - other.X
dy := v.Y - other.Y
dz := v.Z - other.Z
return dx*dx + dy*dy + dz*dz
}
// SetLength sets this vector to have the specified length.
// If the current length is zero, does nothing.
// Returns the pointer to this updated vector.
func (v *Vector3) SetLength(l float32) *Vector3 {
oldLength := v.Length()
if oldLength != 0 && l != oldLength {
v.MultiplyScalar(l / oldLength)
}
return v
}
// Lerp sets each of this vector's components to the linear interpolated value of
// alpha between itself and the corresponding other component.
// Returns the pointer to this updated vector.
func (v *Vector3) Lerp(other *Vector3, alpha float32) *Vector3 {
v.X += (other.X - v.X) * alpha
v.Y += (other.Y - v.Y) * alpha
v.Z += (other.Z - v.Z) * alpha
return v
}
// Equals returns if this vector is equal to other.
func (v *Vector3) Equals(other *Vector3) bool {
return (other.X == v.X) && (other.Y == v.Y) && (other.Z == v.Z)
}
// FromArray sets this vector's components from the specified array and offset
// Returns the pointer to this updated vector.
func (v *Vector3) FromArray(array []float32, offset int) *Vector3 {
v.X = array[offset]
v.Y = array[offset+1]
v.Z = array[offset+2]
return v
}
// ToArray copies this vector's components to array starting at offset.
// Returns the array.
func (v *Vector3) ToArray(array []float32, offset int) []float32 {
array[offset] = v.X
array[offset+1] = v.Y
array[offset+2] = v.Z
return array
}
// MultiplyVectors multiply vectors a and b storing the result in this vector.
// Returns the pointer to this updated vector.
func (v *Vector3) MultiplyVectors(a, b *Vector3) *Vector3 {
v.X = a.X * b.X
v.Y = a.Y * b.Y
v.Z = a.Z * b.Z
return v
}
// ApplyAxisAngle rotates the vector around axis by angle.
// Returns the pointer to this updated vector.
func (v *Vector3) ApplyAxisAngle(axis *Vector3, angle float32) *Vector3 {
var quaternion Quaternion
v.ApplyQuaternion(quaternion.SetFromAxisAngle(axis, angle))
return v
}
// ApplyMatrix3 multiplies the specified 3x3 matrix by this vector.
// Returns the pointer to this updated vector.
func (v *Vector3) ApplyMatrix3(m *Matrix3) *Vector3 {
x := v.X
y := v.Y
z := v.Z
v.X = m[0]*x + m[3]*y + m[6]*z
v.Y = m[1]*x + m[4]*y + m[7]*z
v.Z = m[2]*x + m[5]*y + m[8]*z
return v
}
// ApplyMatrix4 multiplies the specified 4x4 matrix by this vector.
// Returns the pointer to this updated vector.
func (v *Vector3) ApplyMatrix4(m *Matrix4) *Vector3 {
x := v.X
y := v.Y
z := v.Z
v.X = m[0]*x + m[4]*y + m[8]*z + m[12]
v.Y = m[1]*x + m[5]*y + m[9]*z + m[13]
v.Z = m[2]*x + m[6]*y + m[10]*z + m[14]
return v
}
// ApplyProjection applies the projection matrix m to this vector
// Returns the pointer to this updated vector.
func (v *Vector3) ApplyProjection(m *Matrix4) *Vector3 {
x := v.X
y := v.Y
z := v.Z
d := 1 / (m[3]*x + m[7]*y + m[11]*z + m[15]) // perspective divide
v.X = (m[0]*x + m[4]*y + m[8]*z + m[12]) * d
v.Y = (m[1]*x + m[5]*y + m[9]*z + m[13]) * d
v.Z = (m[2]*x + m[6]*y + m[10]*z + m[14]) * d
return v
}
// ApplyQuaternion transforms this vector by multiplying it by
// the specified quaternion and then by the quaternion inverse.
// It basically applies the rotation encoded in the quaternion to this vector.
// Returns the pointer to this updated vector.
func (v *Vector3) ApplyQuaternion(q *Quaternion) *Vector3 {
x := v.X
y := v.Y
z := v.Z
qx := q.X
qy := q.Y
qz := q.Z
qw := q.W
// calculate quat * vector
ix := qw*x + qy*z - qz*y
iy := qw*y + qz*x - qx*z
iz := qw*z + qx*y - qy*x
iw := -qx*x - qy*y - qz*z
// calculate result * inverse quat
v.X = ix*qw + iw*-qx + iy*-qz - iz*-qy
v.Y = iy*qw + iw*-qy + iz*-qx - ix*-qz
v.Z = iz*qw + iw*-qz + ix*-qy - iy*-qx
return v
}
// Cross calculates the cross product of this vector with other and returns the result vector.
func (v *Vector3) Cross(other *Vector3) *Vector3 {
cx := v.Y*other.Z - v.Z*other.Y
cy := v.Z*other.X - v.X*other.Z
cz := v.X*other.Y - v.Y*other.X
v.X = cx
v.Y = cy
v.Z = cz
return v
}
// CrossVectors calculates the cross product of a and b storing the result in this vector.
// Returns the pointer to this updated vector.
func (v *Vector3) CrossVectors(a, b *Vector3) *Vector3 {
cx := a.Y*b.Z - a.Z*b.Y
cy := a.Z*b.X - a.X*b.Z
cz := a.X*b.Y - a.Y*b.X
v.X = cx
v.Y = cy
v.Z = cz
return v
}
// ProjectOnVector sets this vector to its projection on other vector.
// Returns the pointer to this updated vector.
func (v *Vector3) ProjectOnVector(other *Vector3) *Vector3 {
var on Vector3
on.Copy(other).Normalize()
dot := v.Dot(&on)
return v.Copy(&on).MultiplyScalar(dot)
}
// ProjectOnPlane sets this vector to its projection on the plane
// specified by its normal vector.
// Returns the pointer to this updated vector.
func (v *Vector3) ProjectOnPlane(planeNormal *Vector3) *Vector3 {
var tmp Vector3
tmp.Copy(v).ProjectOnVector(planeNormal)
return v.Sub(&tmp)
}
// Reflect sets this vector to its reflection relative to the normal vector.
// The normal vector is assumed to be normalized.
// Returns the pointer to this updated vector.
func (v *Vector3) Reflect(normal *Vector3) *Vector3 {
var tmp Vector3
return v.Sub(tmp.Copy(normal).MultiplyScalar(2 * v.Dot(normal)))
}
// AngleTo returns the angle between this vector and other
func (v *Vector3) AngleTo(other *Vector3) float32 {
theta := v.Dot(other) / (v.Length() * other.Length())
// clamp, to handle numerical problems
return Acos(Clamp(theta, -1, 1))
}
// SetFromMatrixPosition set this vector from the translation coordinates
// in the specified transformation matrix.
func (v *Vector3) SetFromMatrixPosition(m *Matrix4) *Vector3 {
v.X = m[12]
v.Y = m[13]
v.Z = m[14]
return v
}
// SetFromMatrixColumn set this vector with the column at index of the m matrix.
// Returns the pointer to this updated vector.
func (v *Vector3) SetFromMatrixColumn(index int, m *Matrix4) *Vector3 {
offset := index * 4
v.X = m[offset]
v.Y = m[offset+1]
v.Z = m[offset+2]
return v
}
// Clone returns a copy of this vector
func (v *Vector3) Clone() *Vector3 {
return NewVector3(v.X, v.Y, v.Z)
}
// SetFromRotationMatrix sets this vector components to the Euler angles
// from the specified pure rotation matrix.
// Returns the pointer to this updated vector.
func (v *Vector3) SetFromRotationMatrix(m *Matrix4) *Vector3 {
m11 := m[0]
m12 := m[4]
m13 := m[8]
m22 := m[5]
m23 := m[9]
m32 := m[6]
m33 := m[10]
v.Y = Asin(Clamp(m13, -1, 1))
if Abs(m13) < 0.99999 {
v.X = Atan2(-m23, m33)
v.Z = Atan2(-m12, m11)
} else {
v.X = Atan2(m32, m22)
v.Z = 0
}
return v
}
// SetFromQuaternion sets this vector components to the Euler angles
// from the specified quaternion
// Returns the pointer to this updated vector.
func (v *Vector3) SetFromQuaternion(q *Quaternion) *Vector3 {
matrix := NewMatrix4()
matrix.MakeRotationFromQuaternion(q)
v.SetFromRotationMatrix(matrix)
return v
}
// RandomTangents computes and returns two arbitrary tangents to the vector.
func (v *Vector3) RandomTangents() (*Vector3, *Vector3) {
t1 := NewVector3(0, 0, 0)
t2 := NewVector3(0, 0, 0)
length := v.Length()
if length > 0 {
n := NewVector3(v.X/length, v.Y/length, v.Z/length)
randVec := NewVector3(0, 0, 0)
if Abs(n.X) < 0.9 {
randVec.SetX(1)
t1.CrossVectors(n, randVec)
} else if Abs(n.Y) < 0.9 {
randVec.SetY(1)
t1.CrossVectors(n, randVec)
} else {
randVec.SetZ(1)
t1.CrossVectors(n, randVec)
}
t2.CrossVectors(n, t1)
} else {
t1.SetX(1)
t2.SetY(1)
}
return t1, t2
}
// TODO: implement similar methods for Vector2 and Vector4
// AlmostEquals returns whether the vector is almost equal to another vector within the specified tolerance.
func (v *Vector3) AlmostEquals(other *Vector3, tolerance float32) bool {
if (Abs(v.X-other.X) < tolerance) &&
(Abs(v.Y-other.Y) < tolerance) &&
(Abs(v.Z-other.Z) < tolerance) {
return true
}
return false
}
// Vector4 returns a new Vector4 based on this vector and the provided w value.
func (v *Vector3) Vector4(w float32) *Vector4 {
return &Vector4{X: v.X, Y: v.Y, Z: v.Z, W: w}
}