-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathram_mnist.py
245 lines (212 loc) · 9.14 KB
/
ram_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
'''
RAM (c) John Robinson 2022
'''
import argparse
import numpy as np
from torch import optim
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from torch.utils.tensorboard import SummaryWriter
from ram import *
from ram_visualize import *
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(description='RAM Catch')
parser.add_argument('--demo', action='store_true', default=False,
help='demo catch from best checkpoint')
parser.add_argument('--dataset', type=str, default='centered',
help='dataset to use "centered" | "translated" | "cluttered"')
args = parser.parse_args()
# Writer will output to ./runs/ directory by default
writer = SummaryWriter(comment=f'MNIST {args.dataset}')
batch_size = 128
def adjust_learning_rate(optimizer, epoch, lr, decay_rate):
lr = lr * (decay_rate ** epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class RecurrentAttention:
def __init__(self,T,lr,scale,decay,image_size,glimpse_size,dataset):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
kwargs = {'num_workers': 0} if self.device.type=='cuda' else {}
self.dataset = dataset
self.train_loader = torch.utils.data.DataLoader(torch.load('./prepped_mnist/{}_train.dat'.format(self.dataset)),
batch_size=batch_size, shuffle=True, **kwargs)
self.test_loader = torch.utils.data.DataLoader(torch.load('./prepped_mnist/{}_test.dat'.format(self.dataset)),
batch_size=batch_size, shuffle=True, **kwargs)
self.T = T
self.lr = lr
self.std = 0.25
self.scale = scale
self.decay = decay
self.image_size = image_size
self.glimpse_size = glimpse_size
self.model = Model(im_sz=self.image_size,channel=1,glimpse_size=self.glimpse_size,scale=self.scale,std = self.std).to(self.device)
self.loss_fn = Loss(T=self.T,gamma=1,device=self.device).to(self.device)
self.optimizer = optim.Adam(list(self.model.parameters())+list(self.loss_fn.parameters()), lr=self.lr)
self.epoch = 0
def load(self,fn):
# load checkpoint.
m,l,o = torch.load(f'./chkpt/{fn}',map_location=torch.device(self.device))
self.model.load_state_dict(m)
self.loss_fn.load_state_dict(l)
self.optimizer.load_state_dict(o)
def load_epoch(self,epoch):
# load checkpoint. Skip this if you want to train from scratch
self.epoch=epoch
self.load(f'{self.dataset}_{epoch}.pth')
def save(self):
torch.save([self.model.state_dict(),self.loss_fn.state_dict(),self.optimizer.state_dict()],'./chkpt/{}_'.format(self.dataset)+str(self.epoch)+'.pth')
def train(self, num_epochs):
# train. Skip this if you just want to use a pretrained model from above
for self.epoch in range(self.epoch+1,self.epoch+num_epochs+1):
'''
Training
'''
adjust_learning_rate(self.optimizer, self.epoch, self.lr, self.decay)
self.model.train()
train_aloss, train_lloss, train_bloss, train_reward = 0, 0, 0, 0
for batch_idx, (data, label) in enumerate(self.train_loader):
data = data.to(self.device)
label = label.to(self.device)
self.optimizer.zero_grad()
self.model.initialize(data.size(0), self.device)
self.loss_fn.initialize(data.size(0))
for _ in range(self.T):
action,logpi = self.model(data)
aloss,lloss,bloss,reward = self.loss_fn(action,label,logpi)
loss = aloss+lloss+bloss
loss.backward()
self.optimizer.step()
train_aloss += aloss.item()
train_lloss += lloss.item()
train_bloss += bloss.item()
train_reward += reward.item()
avg_train_aloss = train_aloss / len(self.train_loader.dataset)
avg_train_lloss = train_lloss / len(self.train_loader.dataset)
avg_train_bloss = train_bloss / len(self.train_loader.dataset)
avg_train_reward = train_reward * 100 / len(self.train_loader.dataset)
print(f'Train({self.dataset})> Epoch: {self.epoch} Average loss: a {avg_train_aloss:.4f} l {avg_train_lloss:.4f} b {avg_train_bloss:.4f} Reward: {avg_train_reward:.1f}')
self.save() # save the model
'''
See how we're doing against the validation set
'''
self.model.eval()
test_aloss, test_lloss, test_bloss, test_reward = 0, 0, 0, 0
for batch_idx, (data, label) in enumerate(self.test_loader):
data = data.to(self.device)
label = label.to(self.device)
self.model.initialize(data.size(0), self.device)
self.loss_fn.initialize(data.size(0))
for _ in range(self.T):
action,logpi = self.model(data)
aloss, lloss, bloss, reward = self.loss_fn(action, label, logpi)
loss = aloss+lloss+bloss
test_aloss += aloss.item()
test_lloss += lloss.item()
test_bloss += bloss.item()
test_reward += reward.item()
avg_test_aloss = test_aloss / len(self.test_loader.dataset)
avg_test_lloss = test_lloss / len(self.test_loader.dataset)
avg_test_bloss = test_bloss / len(self.test_loader.dataset)
avg_test_reward = test_reward * 100 / len(self.test_loader.dataset)
print(f'Test({self.dataset})> Epoch: {self.epoch} Average loss: a {avg_test_aloss:.4f} l {avg_test_lloss:.4f} b {avg_test_bloss:.4f} Reward: {avg_test_reward:.1f}')
writer.add_scalar('avg_test_aloss',avg_test_aloss,self.epoch)
writer.add_scalar('avg_test_lloss',avg_test_lloss,self.epoch)
writer.add_scalar('avg_test_bloss',avg_test_bloss,self.epoch)
writer.add_scalar('avg_test_reward',avg_test_reward,self.epoch)
# returns a single random mnist sample image (grayscale) and it's associated label
def getRandomSample(self):
sample = next(iter(self.test_loader))
return sample[0][0][0],sample[1][0].item()
def eval(self,image,num=None):
if not num:
num = self.T
self.model.eval()
#test_aloss, test_lloss, test_bloss, test_reward = 0, 0, 0, 0
data = torch.unsqueeze(torch.unsqueeze(image,0),0) # put the single image into a batch of one
data = data.to(self.device)
self.model.initialize(1, self.device)
final_action = None
saccades = [self.model.l[0].cpu().detach().numpy()]
#print('ll:', self.model.l)
for _ in range(num-1):
action,logpi = self.model(data)
#final_action = np.asscalar(action.argmax().cpu().detach().numpy())
final_action = action.argmax().cpu().detach().numpy().item()
#saccades.append(logpi[0].cpu().detach().numpy())
#print('logpi:',logpi)
saccades.append(self.model.l[0].cpu().detach().numpy())
return final_action,saccades
def demo(self):
self.model.eval()
self.load(f'best_{self.dataset}.pth')
while True: # run forever
for batch_idx, (data, label) in enumerate(self.test_loader):
saccades = []
data = data.to(self.device)[0].unsqueeze(0)
label = label.to(self.device)[0].unsqueeze(0)
self.model.initialize(data.size(0), self.device)
self.loss_fn.initialize(data.size(0))
vdata = (data - torch.min(data))/ (torch.max(data)-torch.min(data))
for _ in range(self.T):
action,logpi = self.model(data)
final_action = action.argmax().cpu().detach().numpy().item()
saccades.append(self.model.l[0].cpu().detach().numpy())
vdata = (data - torch.min(data))/ (torch.max(data)-torch.min(data))
cv2.imshow('Recurrent Visual Attention', visualize(title,vdata,saccades,self.glimpse_size,scale,''))
cv2.waitKey(200)
if final_action == label:
status = f'Correct: {final_action}'
status_color=(0,255,0)
else:
status = f'Predicted {final_action} was {label[0]}'
status_color=(255,0,0)
print(status)
cv2.imshow('Recurrent Visual Attention', visualize(title,vdata,saccades,self.glimpse_size,scale,status,status_color))
cv2.waitKey(1000)
if __name__ == "__main__":
title = f'MNIST {args.dataset} dataset'
print(title)
# Configure hyperparameters for different datasets
if args.dataset == 'centered':
T = 7
lr = 0.001
decay = 0.95 # learning rate decay
im_sz = 28 # input image size
scale = 1 # number of times to scale glimpses
glimpse_size = 8 # glimpse size
num_epochs = 100
elif args.dataset == 'translated':
T = 4
lr = 0.0001
decay = 0.975
im_sz = 60
scale = 3
glimpse_size = 12
num_epochs = 200
elif args.dataset == 'cluttered':
T = 4
lr = 0.0001
decay = 0.975
im_sz = 60
scale = 3
glimpse_size = 12
num_epochs = 200
else:
print('Unsupported dataset:', args.dataset)
parser.print_help()
exit()
ra = RecurrentAttention(T,lr,scale,decay,im_sz,glimpse_size,args.dataset)
if args.demo:
print('Running Demo...')
ra.demo()
else:
print('Training...')
ra.train(num_epochs)