-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalexnet.py
167 lines (146 loc) · 4.87 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import tensorflow as tf
net_data = np.load("bvlc-alexnet.npy", encoding="latin1").item()
def conv(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding="VALID", group=1):
'''
From https://github.com/ethereon/caffe-tensorflow
'''
c_i = input.get_shape()[-1]
assert c_i % group == 0
assert c_o % group == 0
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
if tf.__version__ < "1.0.0":
if group == 1:
conv = convolve(input, kernel)
else:
input_groups = tf.split(3, group, input)
kernel_groups = tf.split(3, group, kernel)
output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)]
conv = tf.concat(3, output_groups)
else:
if group == 1:
conv = convolve(input, kernel)
else:
input_groups = tf.split(input, group, 3)
kernel_groups = tf.split(kernel, group, 3)
output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)]
conv = tf.concat(output_groups, 3)
return tf.reshape(tf.nn.bias_add(conv, biases), [-1] + conv.get_shape().as_list()[1:])
def AlexNet(features, feature_extract=False):
"""
Builds an AlexNet model, loads pretrained weights
"""
# conv1
# conv(11, 11, 96, 4, 4, padding='VALID', name='conv1')
k_h = 11
k_w = 11
c_o = 96
s_h = 4
s_w = 4
conv1W = tf.Variable(net_data["conv1"][0])
conv1b = tf.Variable(net_data["conv1"][1])
conv1_in = conv(features, conv1W, conv1b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=1)
conv1 = tf.nn.relu(conv1_in)
# lrn1
# lrn(2, 2e-05, 0.75, name='norm1')
radius = 2
alpha = 2e-05
beta = 0.75
bias = 1.0
lrn1 = tf.nn.local_response_normalization(conv1, depth_radius=radius, alpha=alpha, beta=beta, bias=bias)
# maxpool1
# max_pool(3, 3, 2, 2, padding='VALID', name='pool1')
k_h = 3
k_w = 3
s_h = 2
s_w = 2
padding = 'VALID'
maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)
# conv2
# conv(5, 5, 256, 1, 1, group=2, name='conv2')
k_h = 5
k_w = 5
c_o = 256
s_h = 1
s_w = 1
group = 2
conv2W = tf.Variable(net_data["conv2"][0])
conv2b = tf.Variable(net_data["conv2"][1])
conv2_in = conv(maxpool1, conv2W, conv2b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv2 = tf.nn.relu(conv2_in)
# lrn2
# lrn(2, 2e-05, 0.75, name='norm2')
radius = 2
alpha = 2e-05
beta = 0.75
bias = 1.0
lrn2 = tf.nn.local_response_normalization(conv2, depth_radius=radius, alpha=alpha, beta=beta, bias=bias)
# maxpool2
# max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
k_h = 3
k_w = 3
s_h = 2
s_w = 2
padding = 'VALID'
maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)
# conv3
# conv(3, 3, 384, 1, 1, name='conv3')
k_h = 3
k_w = 3
c_o = 384
s_h = 1
s_w = 1
group = 1
conv3W = tf.Variable(net_data["conv3"][0])
conv3b = tf.Variable(net_data["conv3"][1])
conv3_in = conv(maxpool2, conv3W, conv3b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv3 = tf.nn.relu(conv3_in)
# conv4
# conv(3, 3, 384, 1, 1, group=2, name='conv4')
k_h = 3
k_w = 3
c_o = 384
s_h = 1
s_w = 1
group = 2
conv4W = tf.Variable(net_data["conv4"][0])
conv4b = tf.Variable(net_data["conv4"][1])
conv4_in = conv(conv3, conv4W, conv4b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv4 = tf.nn.relu(conv4_in)
# conv5
# conv(3, 3, 256, 1, 1, group=2, name='conv5')
k_h = 3
k_w = 3
c_o = 256
s_h = 1
s_w = 1
group = 2
conv5W = tf.Variable(net_data["conv5"][0])
conv5b = tf.Variable(net_data["conv5"][1])
conv5_in = conv(conv4, conv5W, conv5b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv5 = tf.nn.relu(conv5_in)
# maxpool5
# max_pool(3, 3, 2, 2, padding='VALID', name='pool5')
k_h = 3
k_w = 3
s_h = 2
s_w = 2
padding = 'VALID'
maxpool5 = tf.nn.max_pool(conv5, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)
# fc6, 4096
fc6W = tf.Variable(net_data["fc6"][0])
fc6b = tf.Variable(net_data["fc6"][1])
flat5 = tf.reshape(maxpool5, [-1, int(np.prod(maxpool5.get_shape()[1:]))])
fc6 = tf.nn.relu(tf.matmul(flat5, fc6W) + fc6b)
# fc7, 4096
fc7W = tf.Variable(net_data["fc7"][0])
fc7b = tf.Variable(net_data["fc7"][1])
fc7 = tf.nn.relu(tf.matmul(fc6, fc7W) + fc7b)
if feature_extract:
return fc7
# fc8, 1000
fc8W = tf.Variable(net_data["fc8"][0])
fc8b = tf.Variable(net_data["fc8"][1])
logits = tf.matmul(fc7, fc8W) + fc8b
probabilities = tf.nn.softmax(logits)
return probabilities