-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSummStatsRichEven_CODE.R
299 lines (259 loc) · 15.8 KB
/
SummStatsRichEven_CODE.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Load necessary libraries
library(readxl)
library(ggplot2)
library(colortools)
library(ggrepel)
library(reshape2)
library(rcompanion)
library(lmPerm)
library(RVAideMemoire)
library(labdsv)
library(metacom)
library(BiodiversityR)
library(tidyverse)
# Load necessary data files, parse data
RichEvenSamp <- read_excel("RichEvenSamp.xlsx")
Forage_BasalResource <- read_excel("Forage_BasalResource.xlsx")
Forage_Permanova <- read_csv("Forage_Permanova.csv")
RichEvenSamp$nseines <- Forage_Permanova$nseines
RichEvenSamp$ntrawls <- Forage_Permanova$ntrawls
RichEvenSamp$Bay <- as.factor(RichEvenSamp$Bay)
RichEvenSamp$Year <- as.factor(RichEvenSamp$Year)
# Calculate average abundance by estuary, transform, and assign column names
Forage_Permanova_avg <- recast(Forage_Permanova, formula = Bay ~ variable, measure.var = c(9:58), fun.aggregate = mean)
Forage_Permanova_4rt <- (Forage_Permanova_avg[, 2:51])^0.25
rownames(Forage_Permanova_4rt) <- Forage_Permanova_avg$Bay
colnames(Forage_Permanova_4rt) <- c("Alabama Shad",
"Skipjack Herring",
"Cuban Anchovy",
"Striped Anchovy",
"Dusky Anchovy",
"Bay Anchovy",
"Anchovies",
"Silver Perch",
"Menhadens",
"Blue Runner",
"Crevalle Jack",
"Horse-eye Jack",
"Atlantic Bumper",
"Herrings",
"Sheepshead Minnow",
"Round Scad",
"Irish Pompano",
"Gizzard Shad",
"Threadfin Shad",
"Eucinostomus Mojarras",
"Marsh Killifish",
"Gulf Killifish",
"Seminole Killifish",
"Longnose Killifish",
"Eastern Mosquitofish",
"Tomtate",
"Scaled Sardine",
"Reef Silverside",
"False Silver Halfbeak",
"Halfbeak",
"Halfbeaks",
"Pinfish",
"Spot",
"Bluefin Killifish",
"Rainwater Killifish",
"Rough Silverside",
"Menidia Silversides",
"Striped Mullet",
"White Mullet",
"Fantail Mullet",
"Mullets",
"Leatherjacket",
"Atlantic Thread Herring",
"Pigfish",
"Gulf Butterfish",
"Harvestfish",
"Sailfin Molly",
"Spanish Sardine",
"Atlantic Moonfish",
"Longspine Porgy")
# Order matrix by reciprocal averaging for shadeplot
Forage_order <- OrderMatrix(Forage_Permanova_4rt, binary = FALSE, outputScores = TRUE)
taxID <- sort(Forage_order$speciesscores, decreasing = TRUE, index.return = TRUE)$ix
Forage_ordered <- Forage_Permanova_4rt[order(Forage_order$sitescores, decreasing = TRUE), taxID]
# Assign numerical labels to taxa
for (i in 1:ncol(Forage_ordered)) {
if (i < 10) {
colnames(Forage_ordered)[i] <- paste(colnames(Forage_ordered)[i], " (", i, ")", sep = "")
} else {
colnames(Forage_ordered)[i] <- paste(colnames(Forage_ordered)[i], " (", i, ")", sep = "")
}
}
# Assign grouping factor for estuaries
Forage_ordered$bay <- factor(rownames(Forage_ordered), levels = c("AP", "CK", "TB", "CH"))
# Wide format -> long format
melt_forage <- melt(Forage_ordered)
melt_forage[melt_forage$value == 0, "value"] <- NA
# Produce shadeplot
forage_shade <- ggplot(melt_forage, aes(bay, reorder(variable,desc(variable)))) +
geom_tile(aes(fill = value),show.legend = FALSE) +
scale_fill_gradient(low = "gray90",high = "black",na.value = "white")+
theme_void() +
scale_x_discrete(position = "top") +
theme(axis.text = element_text(hjust = 1),axis.text.x = element_text(hjust = 0.5,size = 24))
ggsave("Forage_ShadePlot.tiff",forage_shade,width = 6,height = 9,dpi = 300)
# Prepare data for rank abundance and frequency plots
rownames(Forage_BasalResource) <- Forage_BasalResource$Taxa
basal <- data.frame(Forage_BasalResource$Basal)
basal$tax <- rownames(Forage_BasalResource)
basal <- data.frame(basal[taxID, ])
rownames(basal) <- as.character(1:nrow(basal))
basal <- data.frame(basal = basal[, 1])
Forage_tax <- Forage_Permanova[, 9:58]
Forage_tax <- Forage_tax[, taxID]
colnames(Forage_tax) <- as.character(1:ncol(Forage_tax))
Forage_fact <- Forage_Permanova[, 2:6]
Forage_fact$Bay <- factor(Forage_fact$Bay, levels = c("AP", "CK", "TB", "CH"))
Forage_fact$Zone <- as.factor(Forage_fact$Zone)
Forage_fact$Season <- as.factor(Forage_fact$Season)
Forage_Permanova$Bay <- as.factor(Forage_Permanova$Bay)
# Calculate rank abundance by estuary
forage_rankabun_AB <- rankabundance(1 * Forage_tax, y = as.data.frame(Forage_Permanova), factor = "Bay", level = "AP")
forage_rankabun_AB <- data.frame(bay = "AB", rank = forage_rankabun_AB[, "rank"], pctn = forage_rankabun_AB[, "proportion"])
forage_rankabun_AB <- merge(forage_rankabun_AB, basal, by = 0)
forage_rankabun_AB <- forage_rankabun_AB[order(forage_rankabun_AB$rank), ]
forage_rankabun_AB$cumul <- cumsum(forage_rankabun_AB$pctn)
forage_rankabun_CK <- rankabundance(1 * Forage_tax, y = as.data.frame(Forage_Permanova), factor = "Bay", level = "CK")
forage_rankabun_CK <- data.frame(bay = "CK", rank = forage_rankabun_CK[, "rank"], pctn = forage_rankabun_CK[, "proportion"])
forage_rankabun_CK <- merge(forage_rankabun_CK, basal, by = 0)
forage_rankabun_CK <- forage_rankabun_CK[order(forage_rankabun_CK$rank), ]
forage_rankabun_CK$cumul <- cumsum(forage_rankabun_CK$pctn)
forage_rankabun_TB <- rankabundance(1 * Forage_tax, y = as.data.frame(Forage_Permanova), factor = "Bay", level = "TB")
forage_rankabun_TB <- data.frame(bay = "TB", rank = forage_rankabun_TB[, "rank"], pctn = forage_rankabun_TB[, "proportion"])
forage_rankabun_TB <- merge(forage_rankabun_TB, basal, by = 0)
forage_rankabun_TB <- forage_rankabun_TB[order(forage_rankabun_TB$rank), ]
forage_rankabun_TB$cumul <- cumsum(forage_rankabun_TB$pctn)
forage_rankabun_CH <- rankabundance(1 * Forage_tax, y = as.data.frame(Forage_Permanova), factor = "Bay", level = "CH")
forage_rankabun_CH <- data.frame(bay = "CH", rank = forage_rankabun_CH[, "rank"], pctn = forage_rankabun_CH[, "proportion"])
forage_rankabun_CH <- merge(forage_rankabun_CH, basal, by = 0)
forage_rankabun_CH <- forage_rankabun_CH[order(forage_rankabun_CH$rank), ]
forage_rankabun_CH$cumul <- cumsum(forage_rankabun_CH$pctn)
# Parse all rank abundances into one df for plotting
forage_rankabun <- rbind(forage_rankabun_AB, forage_rankabun_CH, forage_rankabun_CK, forage_rankabun_TB)
colnames(forage_rankabun) <- c("taxa", "bay", "rank", "pctn", "basal", "cumul")
forage_rankabun$bay <- as.factor(forage_rankabun$bay)
forage_rankabun <- forage_rankabun[order(forage_rankabun$rank), ]
rankabun_plots <- list()
# Construct rank abundance plots by estuary
for (i in levels(forage_rankabun$bay)){
abun_plot <- ggplot(filter(forage_rankabun, bay == i), aes(x = rank, y = pctn,fill = basal,label = taxa)) +
geom_col() +
theme_classic() +
scale_fill_manual(values = c("darkgreen","darkblue","chocolate4","aquamarine3"),limits = c("Benthic","Planktonic","Detritivore","Mixed")) +
geom_text(vjust = "bottom",nudge_y = 0.5,size = 3,fontface = "bold") +
labs(x = "Species rank",y = "Relative abundance",fill = "Basal resource") +
scale_x_continuous(limits = c(0,NA),expand = c(0,0)) +
scale_y_continuous(limits = c(0,NA),expand = expansion(mult = c(0,0.1))) +
theme()
plot(abun_plot)
rankabun_plots[[i]] <- abun_plot
}
# Calculate rank frequency as presence-absence rank abundance by estuary
forage_rankfreq_AB <- rankabundance(1 * (Forage_tax > 0), y = as.data.frame(Forage_Permanova), factor = "Bay", level = "AP")
forage_rankfreq_AB <- data.frame(bay = "AB", rank = forage_rankfreq_AB[, "rank"], f = forage_rankfreq_AB[, "abundance"]/nrow(Forage_tax))
forage_rankfreq_AB <- merge(forage_rankfreq_AB, basal, by = 0)
forage_rankfreq_CK <- rankabundance(1 * (Forage_tax > 0), y = as.data.frame(Forage_Permanova), factor = "Bay", level = "CK")
forage_rankfreq_CK <- data.frame(bay = "CK", rank = forage_rankfreq_CK[, "rank"], f = forage_rankfreq_CK[, "abundance"]/nrow(Forage_tax))
forage_rankfreq_CK <- merge(forage_rankfreq_CK, basal, by = 0)
forage_rankfreq_TB <- rankabundance(1 * (Forage_tax > 0), y = as.data.frame(Forage_Permanova), factor = "Bay", level = "TB")
forage_rankfreq_TB <- data.frame(bay = "TB", rank = forage_rankfreq_TB[, "rank"], f = forage_rankfreq_TB[, "abundance"]/nrow(Forage_tax))
forage_rankfreq_TB <- merge(forage_rankfreq_TB, basal, by = 0)
forage_rankfreq_CH <- rankabundance(1 * (Forage_tax > 0), y = as.data.frame(Forage_Permanova), factor = "Bay", level = "CH")
forage_rankfreq_CH <- data.frame(bay = "CH", rank = forage_rankfreq_CH[, "rank"], f = forage_rankfreq_CH[, "abundance"]/nrow(Forage_tax))
forage_rankfreq_CH <- merge(forage_rankfreq_CH, basal, by = 0)
# Parse all rank frequencies into one df for plotting
forage_rankfreq <- rbind(forage_rankfreq_AB, forage_rankfreq_CH, forage_rankfreq_CK, forage_rankfreq_TB)
colnames(forage_rankfreq) <- c("taxa", "bay", "rank", "freq", "basal")
forage_rankfreq$bay <- as.factor(forage_rankfreq$bay)
rankfreq_plots <- list()
# Construct rank frequency plots by estuary
for (i in levels(forage_rankfreq$bay)){
freq_plot <- ggplot(filter(forage_rankfreq, bay == i), aes(x = rank, y = freq,fill = basal,label = taxa)) +
geom_col() +
scale_fill_manual(values = c("darkgreen","darkblue","chocolate4","aquamarine3"),limits = c("Benthic","Planktonic","Detritivore","Mixed")) +
geom_text(vjust = "bottom",nudge_y = 0.005,size = 3,fontface = "bold") +
theme_classic() +
labs(x = "Species rank",y = "Frequency of occurrence",fill = "Basal resource") +
scale_x_continuous(limits = c(0,NA),expand = c(0,0)) +
scale_y_continuous(limits = c(0,NA),expand = expansion(mult = c(0,.1))) +
theme()
plot(freq_plot)
rankfreq_plots[[i]] <- freq_plot
}
# Detrend richness and evenness for sample size
detrendMod_Rich <- lm(S ~ nseines + ntrawls, data = RichEvenSamp)
anova(detrendMod_Rich)
S_detrend <- detrendMod_Rich$residuals + detrendMod_Rich$coefficients[1]
RichEvenSamp$S_detrend <- S_detrend
detrendMod_Even <- lm(`J'` ~ nseines + ntrawls, data = RichEvenSamp)
summary(detrendMod_Even)
J_detrend <- detrendMod_Even$residuals + detrendMod_Even$coefficients[1]
RichEvenSamp[is.na(RichEvenSamp$`J'`) == 0, "J_detrend"] <- J_detrend
# Perform anovas for richness and evenness by bay and season
detrendRich_perm_bay <- perm.anova(S_detrend ~ Bay, data = RichEvenSamp, nperm = 999)
View(detrendRich_perm_bay)
detrendRich_pair_bay <- pairwisePermutationTest(S_detrend ~ Bay, data = RichEvenSamp)
detrendRich_PM_bay <- pairwisePermutationMatrix(S_detrend ~ Bay, data = RichEvenSamp)
detrendRich_perm_Season <- perm.anova(S_detrend ~ as.factor(Season), data = RichEvenSamp, nperm = 999)
View(detrendRich_perm_Season)
detrendRich_pair_Season <- pairwisePermutationTest(S_detrend ~ as.factor(Season), data = RichEvenSamp)
detrendRich_PM_Season <- pairwisePermutationMatrix(S_detrend ~ as.factor(Season), data = RichEvenSamp)
detrendEven_perm_bay <- perm.anova(J_detrend ~ Bay, data = RichEvenSamp, nperm = 999) # Not significant
View(detrendEven_perm_bay)
detrendEven_perm_Season <- perm.anova(J_detrend ~ as.factor(Season), data = RichEvenSamp, nperm = 999)
View(detrendEven_perm_Season)
detrendEven_pair_Season <- pairwisePermutationTest(J_detrend ~ as.factor(Season), data = RichEvenSamp)
detrendEven_PM_Season <- pairwisePermutationMatrix(J_detrend ~ as.factor(Season), data = RichEvenSamp)
# Construct plots for richness and evenness by bay and season
RichBay_plot <- ggplot(RichEvenSamp, aes(x=factor(Bay,levels = c("AP","CK","TB","CH")), y=S_detrend)) +
theme_classic() +
scale_x_discrete(labels = c("AB","CK","TB","CH")) +
labs(x = NULL,y = "Species richness") +
geom_boxplot(size = 1,outlier.size = 1)
ggsave("RichBay_plot.tiff",RichBay_plot,width = 4,height = 4,dpi = 300)
RichSeason_plot <- ggplot(RichEvenSamp, aes(x=as.factor(Season), y=S_detrend)) +
theme_classic() +
scale_x_discrete(labels = c("Wi","Sp","Su","Fa")) +
labs(x = NULL,y = "Species richness") +
geom_boxplot(size = 1,outlier.size = 1)
ggsave("RichSeason_plot.tiff",RichSeason_plot,width = 4,height = 4,dpi = 300)
EvenBay_plot <- ggplot(RichEvenSamp, aes(x=factor(Bay,levels = c("AP","CK","TB","CH")), y=J_detrend)) +
theme_classic() +
scale_x_discrete(labels = c("AB","CK","TB","CH")) +
labs(x = NULL,y = "Species evenness") +
geom_boxplot(size = 1,outlier.size = 1)
ggsave("EvenBay_plot.tiff",EvenBay_plot,width = 4,height = 4,dpi = 300)
EvenSeason_plot <- ggplot(RichEvenSamp, aes(x=as.factor(Season), y=J_detrend)) +
theme_classic() +
scale_x_discrete(labels = c("Wi","Sp","Su","Fa")) +
labs(x = NULL,y = "Species evenness") +
geom_boxplot(size = 1,outlier.size = 1)
ggsave("EvenSeason_plot.tiff",EvenSeason_plot,width = 4,height = 4,dpi = 300)
# Conduct modified indval analysis for all samples
clust_all <- rep(1, nrow(Forage_tax))
forage_indval_all <- indval(Forage_tax, clust_all)
avg_abund <- apply(Forage_tax, 2, mean)
rel_abund <- avg_abund/sum(avg_abund)
indvals_all <- forage_indval_all$relfrq * rel_abund
indvals_all[, 2] <- forage_indval_all$relfrq
indvals_all[, 3] <- rel_abund
# Conduct modified indval analysis by estuary
indvals_bay <- list()
for (i in levels(Forage_fact$Bay)) {
clust_bay <- rep(1, nrow(Forage_tax[Forage_fact$Bay == i, ]))
forage_indval_bay <- indval(Forage_tax[Forage_fact$Bay == i, colSums(Forage_tax[Forage_fact$Bay == i, ]) > 0], clust_bay)
avg_abund <- apply(Forage_tax[Forage_fact$Bay == i, colSums(Forage_tax[Forage_fact$Bay == i, ]) > 0], 2, mean)
rel_abund <- avg_abund/sum(avg_abund)
indvals_bay[[i]] <- data.frame(forage_indval_bay$relfrq * rel_abund, rel_abund, forage_indval_bay$relfrq)
}
# Save plot and numerical id data
save(forage_shade, file = "ShadePlot.RData")
save(RichBay_plot, RichSeason_plot, EvenBay_plot, EvenSeason_plot, file = "SummStatPlots.RData")
save(rankfreq_plots, rankabun_plots, file = "RankPlots.RData")
save(taxID, file = "TaxaID.RData")