-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplay_buffer.py
35 lines (27 loc) · 1.53 KB
/
replay_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import random
from collections import namedtuple, deque
import torch
class ReplayBuffer():
def __init__(self, action_size, buffer_size, batch_size, seed,device):
self.action_size = action_size
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
random.seed(seed)
self.device=device
# storing as np arrays
def add(self, state, action, reward, next_state, done):
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
# sampling and transforming to tensors
def sample(self):
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(self.device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(self.device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(self.device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(self.device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(self.device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
return len(self.memory)