-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathex3_1_dnn_mnist_cl.py
41 lines (33 loc) · 1.41 KB
/
ex3_1_dnn_mnist_cl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# 기본 파라미터 설정 #########################
Nin = 784
Nh_l = [100, 50]
number_of_class = 10
Nout = number_of_class
# 분류 DNN 모델 구현 ########################
from keras import layers, models
class DNN(models.Sequential):
def __init__(self, Nin, Nh_l, Nout):
super().__init__()
self.add(layers.Dense(Nh_l[0], activation='relu', input_shape=(Nin,), name='Hidden-1'))
self.add(layers.Dense(Nh_l[1], activation='relu', name='Hidden-2'))
self.add(layers.Dense(Nout, activation='softmax'))
self.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 데이터 준비 ##############################
import numpy as np
from keras import datasets
from keras.utils import np_utils
(X_train, y_train), (X_test, y_test) = datasets.mnist.load_data()
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
L, W, H = X_train.shape
X_train = X_train.reshape(-1, W * H)
X_test = X_test.reshape(-1, W * H)
X_train = X_train / 255.0
X_test = X_test / 255.0
# 분류 DNN 학습 및 테스팅 ####################
model = DNN(Nin, Nh_l, Nout)
history = model.fit(X_train, y_train, epochs=5, batch_size=100, validation_split=0.2)
performace_test = model.evaluate(X_test, y_test, batch_size=100)
print('Test Loss and Accuracy ->', performace_test)