-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPostCal.cpp
407 lines (393 loc) · 11.9 KB
/
PostCal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#include <vector>
#include <algorithm>
#include <set>
#include <iostream>
#include <armadillo>
#include <omp.h>
#include "Util.h"
#include "PostCal.h"
using namespace arma;
void printGSLPrint(mat &A, int row, int col) {
for(int i = 0; i < row; i++) {
for(int j = 0; j < col; j++)
printf("%g ", A(i, j));
printf("\n");
}
}
string PostCal::convertConfig2String(int * config, int size) {
string result = "0";
for(int i = 0; i < size; i++)
if(config[i]==1)
result+= "_" + convertInt(i);
return result;
}
//Calculate the likelihood of each causal state.
double PostCal::likelihood(int * configure_x) {
int causalCount = 0;
int index_C = 0;
double matDet = 0;
double res = 0;
for(int i = 0; i < snpCount; i++)
{
causalCount += configure_x[i];
}
if(causalCount == 0){
mat tmpResultMatrix11 = trans(stat)*stat;
res = tmpResultMatrix11(0,0);
baseValue = res;
matDet =1;
res = res - baseValue;
return( exp(-res/2)/sqrt(abs(matDet)) );
}
vector<int> noz;
for(int i = 0; i < snpCount; i++) {
if (configure_x[i] == 0) continue;
else {
noz.push_back(i);
}
}
mat X_noz=mat(number,noz.size(),fill::zeros);
for(int i=0;i<noz.size();i++)
{
for(int j=0;j<number;j++)
{
X_noz(j,i)=X(j,noz[i]);
}
}
double inv_ve=10.0;
vector<double> test;
vector<double> test_tmplogDet;
double start=0.2;
double end=0.8;
double win=0.1;
for(double x=start;x<=end;x+=win)
{
mat XtX=trans(X_noz)*X_noz;
// cout<<"XtX is: "<<XtX(0,0)<<endl;
mat inv_XtX=pinv(XtX);
// cout<<"inv_XtX is: "<<inv_XtX(0,0)<<endl;
mat xy=trans(X_noz)*stat;
// cout<<"xy is: "<<xy(0,0)<<endl;
mat res_test=inv_XtX*trans(X_noz)*stat;
mat resi=stat-X_noz*res_test;
// double phe_variance=stddev(resi.col(0));
colvec residuals = stat - X_noz * res_test;
double s2=0;
for(int i_x=0;i_x<number;i_x++)
{
s2+=residuals(i_x,0)*residuals(i_x,0);
}
s2/=number;
// cout<<"s2 is: "<<s2<<endl;
mat eVb=xy/s2;
// cout<<"eVb is: "<<eVb<<endl;
mat eVg_inv=trans(X_noz)*X_noz/s2;
// cout<<"eVg_inv is: "<<eVg_inv(0,0)<<endl;
mat covariance2=mat(noz.size(),noz.size(),fill::eye)+eVg_inv*(x*x)*mat(noz.size(),noz.size(),fill::eye);
matDet =log(abs(det(covariance2)));
mat covariance =(x*x)*mat(noz.size(),noz.size(),fill::eye)*pinv(covariance2);
// cout<<"covariance is: "<<covariance<<endl;
mat tmp_AA=trans(eVb)*(covariance)*eVb;
res =tmp_AA(0,0);
test.push_back(res);
test_tmplogDet.push_back(matDet);
if(matDet==0)
{
exit(0);
}
}
res=0;
for(int i_test=0;i_test<test.size();i_test++)
{
res+=exp(test[i_test]/2-test_tmplogDet[i_test]/2);
}
double test_t=res/int(1+(end-start)/win);
// cout<<"res is: "<<test_t<<endl;
return(res/int(1+(end-start)/win));
}
//Scan for each causal state, and store them in a vecotr, used in parallel manner
int PostCal::nextBinary(int * data, int size) {
int i = 0;
int total_one = 0;
int index = size-1;
int one_countinus_in_end = 0;
while(index >= 0 && data[index] == 1) {
index = index - 1;
one_countinus_in_end = one_countinus_in_end + 1;
}
if(index >= 0) {
while(index >= 0 && data[index] == 0) {
index = index - 1;
}
}
if(index == -1) {
while(i < one_countinus_in_end+1 && i < size) {
data[i] = 1;
i=i+1;
}
i = 0;
while(i < size-one_countinus_in_end-1) {
data[i+one_countinus_in_end+1] = 0;
i=i+1;
}
}
else if(one_countinus_in_end == 0) {
data[index] = 0;
data[index+1] = 1;
} else {
data[index] = 0;
while(i < one_countinus_in_end + 1) {
data[i+index+1] = 1;
if(i+index+1 >= size)
printf("ERROR3 %d\n", i+index+1);
i=i+1;
}
i = 0;
while(i < size - index - one_countinus_in_end - 2) {
data[i+index+one_countinus_in_end+2] = 0;
if(i+index+one_countinus_in_end+2 >= size) {
printf("ERROR4 %d\n", i+index+one_countinus_in_end+2);
}
i=i+1;
}
}
i = 0;
total_one = 0;
for(i = 0; i < size; i++)
if(data[i] == 1)
total_one = total_one + 1;
return(total_one);
}
int PostCal::decomp(vector<int> &str, int *data, int num)
{
int init_start = 0;
int init_end = 0;
int test=str.size();
if(str[0]!=-1)
{
for (int idx = 0; idx < str.size(); idx++)
{
// cout<<" "<<str[idx]<<endl;
for (int i_x = init_start; i_x<init_start + str[idx]; i_x++)
{
data[i_x] = 0;
}
int last = init_start + str[idx];
data[last] = 1;
init_start = init_start + str[idx] + 1;
}
for (int x = init_start + 1; x<num; x++)
{
data[x] = 0;
}
} else
{
for (int y =0; y<num; y++)
{
data[y] = 0;
}
}
int num_x=0;
for (int x = 0; x<num; x++)
{
if(data[x]==1)
{
num_x++;
}
}
return num_x;
}
string PostCal::convert_symbol(int *data, int num,vector<int> &output)
{
string str;
string sym = "";
int a = 0;
int index=0;
for (int n = 0; n<num; n++)
{
if (data[n] == 1)
{
ostringstream temp; //temp as in temporary
temp<<a;
string x=temp.str(); //str is temp as string
output.push_back(a);
str += x;
index=1;
a = 0;
}
else
{
a++;
}
}
if(index==0)
{
output.push_back(-1);
}
return str;
}
double PostCal::computeTotalLikelihood(double * stat,map<int,double>& Weight, int nthread) {
double sumLikelihood = 0;
double tmp_likelihood = 0;
long int total_iteration = 0 ;
int * configure = (int *) malloc (snpCount * sizeof(int *)); // original data
for(long int i = 0; i <= maxCausalSNP; i++)
total_iteration = total_iteration + nCr(snpCount, i);
// cout << snpCount << endl;
// cout << "Max Causal=" << maxCausalSNP << endl;
// cout << "Total=" << total_iteration << endl;
for(long int i = 0; i < snpCount; i++)
configure[i] = 0;
vector<vector<int> > test;
vector<int> res;
convert_symbol(configure, snpCount,res);
test.push_back(res);
for(long int i = 1; i < total_iteration; i++)
{
nextBinary(configure, snpCount);
vector<int> res;
convert_symbol(configure, snpCount,res);
test.push_back(res);
}
for(long int i=0;i<snpCount;i++)
{
configure[i]=0;
}
double prior_x=1;
for(long int zeng = 0; zeng < snpCount; zeng++)
{
double test_x=0.01;
if(configure[zeng]==1)
{
test_x=test_x;
} else
{
test_x=1-test_x;
}
prior_x=prior_x*test_x;
}
int test_x=0;
tmp_likelihood = likelihood(configure) * prior_x;
// cout<<"tmp_likelihood is: "<<tmp_likelihood<<endl;
sumLikelihood += tmp_likelihood;
for(int j = 0; j < snpCount; j++)
{
postValues[j] = postValues[j] + tmp_likelihood * configure[j];
}
int confi[nthread][snpCount];
for(long int i=0;i<nthread;i++)
{
for(long int j_x=0;j_x<snpCount;j_x++)
{
confi[i][j_x]=configure[j_x];
}
}
int tid;
omp_set_num_threads(nthread);
prior_x=1;
int num;
int nloops=0;
#pragma omp parallel private (tid,prior_x,num,tmp_likelihood,nloops)
{
#pragma omp for
for(long int i = 1; i < total_iteration; i++) {
double prior=1;
tid=omp_get_thread_num();
num=snpCount;
#pragma omp critical
{
int init_start = 0;
int init_end = 0;
vector<int> str=test[i];
int test=str.size();
if(str[0]!=-1)
{
for (int idx = 0; idx < str.size(); idx++)
{
for (int i_x = init_start; i_x<init_start + str[idx]; i_x++)
{
confi[tid][i_x] = 0;
}
int last = init_start + str[idx];
confi[tid][last] = 1;
init_start = init_start + str[idx] + 1;
}
for (int x = init_start; x<num; x++)
{
confi[tid][x] = 0;
}
} else
{
for (int y =0; y<num; y++)
{
confi[tid][y] = 0;
}
}
for (int x = 0; x<num; x++)
{
if(confi[tid][x]==1)
{
}
}
}
nloops++;
prior_x=1;
#pragma omp critical
{
for(long int zeng = 0; zeng < snpCount; zeng++)
{
double test_x=1;
if(confi[tid][zeng]==1)
{
test_x=0.01;
} else
{
test_x=1-0.01;
}
prior_x=prior_x*test_x;
}
}
tmp_likelihood = likelihood(confi[tid]) * prior_x;
// cout<<"tmp_likelihood is: "<<tmp_likelihood<<", prior_x is: "<<prior_x<<endl;
#pragma omp critical
{
sumLikelihood += tmp_likelihood;
for(int j = 0; j < snpCount; j++)
{
postValues[j] = postValues[j] + tmp_likelihood * confi[tid][j];
}
}
}
tid = omp_get_thread_num();
}
free(configure);
return(sumLikelihood);
}
double PostCal::findOptimalSetGreedy(double * stat, char * configure, int *rank, double inputRho, map<int, double>& Weight, int nthread) {
int index = 0;
double rho = 0;
double total_post = 0;
totalLikeLihood = computeTotalLikelihood(stat, Weight, nthread);
for(int i = 0; i < snpCount; i++)
total_post += postValues[i];
printf("Total Likelihood= %e SNP=%d \n", total_post, snpCount);
std::vector<data> items;
std::set<int>::iterator it;
for(int i = 0; i < snpCount; i++) {
items.push_back(data(postValues[i]/total_post, i, 0));
}
printf("\n");
std::sort(items.begin(), items.end(), by_number());
for(int i = 0; i < snpCount; i++)
rank[i] = items[i].index1;
for(int i = 0; i < snpCount; i++)
configure[i] = '0';
do{
rho += postValues[rank[index]]/total_post;
configure[rank[index]] = '1';
printf("%d %e\n", rank[index], rho);
index++;
} while( rho < inputRho);
printf("\n");
return(0);
}