-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgemma.cpp
658 lines (603 loc) · 22.7 KB
/
gemma.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#include <iostream>
#include <fstream>
#include <string>
#include <cstring>
#include <sys/stat.h>
#include <cmath>
#include "gsl/gsl_vector.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_blas.h"
#include "gsl/gsl_eigen.h"
#include "gsl/gsl_cdf.h"
#include "gemma_lapack.h" //for functions EigenDecomp
#ifdef FORCE_FLOAT
#include "io_float.h" //for function ReadFile_kin
#include "gemma_float.h"
#include "lmm_float.h" //for LMM class, and functions CalcLambda, CalcPve, CalcVgVe
#include "mathfunc_float.h" //for a few functions
#else
#include "gemma_io.h"
#include "gemma.h"
#include "gemma_lmm.h"
#include "gemma_mathfunc.h"
#endif
using namespace std;
GEMMA::GEMMA(void):
version("0.94"), date("01/12/2014"), year("2011")
{}
void GEMMA::PrintHeader (void)
{
}
void GEMMA::PrintLicense (void)
{
}
void GEMMA::PrintHelp(size_t option)
{
if (option==0) {
cout<<endl;
cout<<" GEMMA version "<<version<<", released on "<<date<<endl;
cout<<" implemented by Xiang Zhou"<<endl;
cout<<endl;
cout<<" type ./gemma -h [num] for detailed helps"<<endl;
cout<<" options: " << endl;
cout<<" 1: quick guide"<<endl;
cout<<" 2: file I/O related"<<endl;
cout<<" 3: SNP QC"<<endl;
cout<<" 4: calculate relatedness matrix"<<endl;
cout<<" 5: perform eigen decomposition"<<endl;
cout<<" 6: fit a linear model"<<endl;
cout<<" 7: fit a linear mixed model"<<endl;
cout<<" 8: fit a multivariate linear mixed model"<<endl;
cout<<" 9: fit a Bayesian sparse linear mixed model"<<endl;
cout<<" 10: obtain predicted values"<<endl;
cout<<" 11: note"<<endl;
cout<<endl;
}
if (option==1) {
cout<<" QUICK GUIDE" << endl;
cout<<" to generate a relatedness matrix: "<<endl;
cout<<" ./gemma -bfile [prefix] -gk [num] -o [prefix]"<<endl;
cout<<" ./gemma -g [filename] -p [filename] -gk [num] -o [prefix]"<<endl;
cout<<" to perform eigen decomposition of the relatedness matrix: "<<endl;
cout<<" ./gemma -bfile [prefix] -k [filename] -eigen -o [prefix]"<<endl;
cout<<" ./gemma -g [filename] -p [filename] -k [filename] -eigen -o [prefix]"<<endl;
cout<<" to fit a linear mixed model: "<<endl;
cout<<" ./gemma -bfile [prefix] -k [filename] -lmm [num] -o [prefix]"<<endl;
cout<<" ./gemma -g [filename] -p [filename] -a [filename] -k [filename] -lmm [num] -o [prefix]"<<endl;
cout<<" to fit a multivariate linear mixed model: "<<endl;
cout<<" ./gemma -bfile [prefix] -k [filename] -lmm [num] -n [num1] [num2] -o [prefix]"<<endl;
cout<<" ./gemma -g [filename] -p [filename] -a [filename] -k [filename] -lmm [num] -n [num1] [num2] -o [prefix]"<<endl;
cout<<" to fit a Bayesian sparse linear mixed model: "<<endl;
cout<<" ./gemma -bfile [prefix] -bslmm [num] -o [prefix]"<<endl;
cout<<" ./gemma -g [filename] -p [filename] -a [filename] -bslmm [num] -o [prefix]"<<endl;
cout<<" to obtain predicted values: "<<endl;
cout<<" ./gemma -bfile [prefix] -epm [filename] -emu [filename] -ebv [filename] -k [filename] -predict [num] -o [prefix]"<<endl;
cout<<" ./gemma -g [filename] -p [filename] -epm [filename] -emu [filename] -ebv [filename] -k [filename] -predict [num] -o [prefix]"<<endl;
cout<<endl;
}
if (option==7) {
cout<<" LINEAR MIXED MODEL OPTIONS" << endl;
cout<<" -lmm [num] "<<" specify analysis options (default 1)."<<endl;
cout<<" options: 1: Wald test"<<endl;
cout<<" 2: Likelihood ratio test"<<endl;
cout<<" 3: Score test"<<endl;
cout<<" 4: 1-3"<<endl;
cout<<" 5: Parameter estimation in the null model only"<<endl;
cout<<" -lmin [num] "<<" specify minimal value for lambda (default 1e-5)" << endl;
cout<<" -lmax [num] "<<" specify maximum value for lambda (default 1e+5)" << endl;
cout<<" -region [num] "<<" specify the number of regions used to evaluate lambda (default 10)" << endl;
cout<<endl;
}
if (option==11) {
cout<<" NOTE"<<endl;
cout<<" 1. Only individuals with non-missing phenotoypes and covariates will be analyzed."<<endl;
cout<<" 2. Missing genotoypes will be repalced with the mean genotype of that SNP."<<endl;
cout<<" 3. For lmm analysis, memory should be large enough to hold the relatedness matrix and to perform eigen decomposition."<<endl;
cout<<" 4. For multivariate lmm analysis, use a large -pnr for each snp will increase computation time dramatically."<<endl;
cout<<" 5. For bslmm analysis, in addition to 3, memory should be large enough to hold the whole genotype matrix."<<endl;
cout<<endl;
}
return;
}
void GEMMA::Assign(int argc, char ** argv, PARAM &cPar)
{
string str;
for(int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-bfile")==0 || strcmp(argv[i], "--bfile")==0 || strcmp(argv[i], "-b")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_bfile=str;
}
else if (strcmp(argv[i], "-silence")==0) {
cPar.mode_silence=true;
}
else if (strcmp(argv[i], "-g")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_geno=str;
}
else if (strcmp(argv[i], "-p")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_pheno=str;
}
else if (strcmp(argv[i], "-a")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_anno=str;
}
else if (strcmp(argv[i], "-k")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_kin=str;
}
else if (strcmp(argv[i], "-c")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_cvt=str;
}
else if (strcmp(argv[i], "-r")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_read=str;
}
else if (strcmp(argv[i], "-snps")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_snps=str;
}
else if (strcmp(argv[i], "-km")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.k_mode=atoi(str.c_str());
}
else if (strcmp(argv[i], "-n")==0) {
(cPar.p_column).clear();
while (argv[i+1] != NULL && argv[i+1][0] != '-') {
++i;
str.clear();
str.assign(argv[i]);
(cPar.p_column).push_back(atoi(str.c_str()));
}
}
else if (strcmp(argv[i], "-pace")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.d_pace=atoi(str.c_str());
}
else if (strcmp(argv[i], "-o")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_out=str;
}
else if (strcmp(argv[i], "-miss")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.miss_level=atof(str.c_str());
}
else if (strcmp(argv[i], "-maf")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
if (cPar.maf_level!=-1) {cPar.maf_level=atof(str.c_str());}
}
else if (strcmp(argv[i], "-hwe")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.hwe_level=atof(str.c_str());
}
else if (strcmp(argv[i], "-r2")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.r2_level=atof(str.c_str());
}
else if (strcmp(argv[i], "-notsnp")==0) {
cPar.maf_level=-1;
}
else if (strcmp(argv[i], "-gk")==0) {
if (cPar.a_mode!=0) {cPar.error=true; cout<<"error! only one of -gk -eigen -lm -lmm -bslmm -predict options is allowed."<<endl; break;}
if(argv[i+1] == NULL || argv[i+1][0] == '-') {cPar.a_mode=21; continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode=20+atoi(str.c_str());
}
else if (strcmp(argv[i], "-fa")==0 || strcmp(argv[i], "-lmm")==0) {
if (cPar.a_mode!=0) {cPar.error=true; cout<<"error! only one of -gk -eigen -lm -lmm -bslmm -predict options is allowed."<<endl; break;}
if(argv[i+1] == NULL || argv[i+1][0] == '-') {cPar.a_mode=1; continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode=atoi(str.c_str());
}
else if (strcmp(argv[i], "-lmin")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.l_min=atof(str.c_str());
}
else if (strcmp(argv[i], "-lmax")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.l_max=atof(str.c_str());
}
else if (strcmp(argv[i], "-region")==0) {
if(argv[i+1] == NULL || argv[i+1][0] == '-') {continue;}
++i;
str.clear();
str.assign(argv[i]);
cPar.n_region=atoi(str.c_str());
}
else {cout<<"error! unrecognized option: "<<argv[i]<<endl; cPar.error=true; continue;}
}
//change prediction mode to 43, if the epm file is not provided
if (cPar.a_mode==41 && cPar.file_epm.empty()) {cPar.a_mode=43;}
return;
}
void GEMMA::BatchRun (PARAM &cPar)
{
clock_t time_begin, time_start;
time_begin=clock();
//Read Files
cout<<"Reading Files ... "<<endl;
cPar.ReadFiles();
if (cPar.error==true) {cout<<"error! fail to read files. "<<endl; return;}
cPar.CheckData();
if (cPar.error==true) {cout<<"error! fail to check data. "<<endl; return;}
if (cPar.a_mode==1 || cPar.a_mode==2 || cPar.a_mode==3 || cPar.a_mode==4 || cPar.a_mode==5 || cPar.a_mode==31) { //Fit LMM or mvLMM or eigen
gsl_matrix *Y=gsl_matrix_alloc (cPar.ni_test, cPar.n_ph);
gsl_matrix *W=gsl_matrix_alloc (Y->size1, cPar.n_cvt);
gsl_matrix *B=gsl_matrix_alloc (Y->size2, W->size2); //B is a d by c matrix
gsl_matrix *se_B=gsl_matrix_alloc (Y->size2, W->size2);
gsl_matrix *G=gsl_matrix_alloc (Y->size1, Y->size1);
gsl_matrix *U=gsl_matrix_alloc (Y->size1, Y->size1);
gsl_matrix *UtW=gsl_matrix_alloc (Y->size1, W->size2);
gsl_matrix *UtY=gsl_matrix_alloc (Y->size1, Y->size2);
gsl_vector *eval=gsl_vector_alloc (Y->size1);
cPar.CopyCvtPhen (W, Y, 0);
if (!(cPar.file_kin).empty()) {
ReadFile_kin (cPar.file_kin, cPar.indicator_idv, cPar.mapID2num, cPar.k_mode, cPar.error, G);
if (cPar.error==true) {cout<<"error! fail to read kinship/relatedness file. "<<endl; return;}
CenterMatrix (G);
cout<<"Start Eigen-Decomposition..."<<endl;
time_start=clock();
if (cPar.a_mode==31) {
cPar.trace_G=EigenDecomp (G, U, eval, 1);
} else {
cPar.trace_G=EigenDecomp (G, U, eval, 0);
}
cPar.trace_G=0.0;
for (size_t i=0; i<eval->size; i++) {
if (gsl_vector_get (eval, i)<1e-10) {gsl_vector_set (eval, i, 0);}
cPar.trace_G+=gsl_vector_get (eval, i);
}
cPar.trace_G/=(double)eval->size;
cPar.time_eigen=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
} else {
ReadFile_eigenU (cPar.file_ku, cPar.error, U);
if (cPar.error==true) {cout<<"error! fail to read the U file. "<<endl; return;}
ReadFile_eigenD (cPar.file_kd, cPar.error, eval);
if (cPar.error==true) {cout<<"error! fail to read the D file. "<<endl; return;}
cPar.trace_G=0.0;
for (size_t i=0; i<eval->size; i++) {
if (gsl_vector_get(eval, i)<1e-10) {gsl_vector_set(eval, i, 0);}
cPar.trace_G+=gsl_vector_get(eval, i);
}
cPar.trace_G/=(double)eval->size;
}
if (cPar.a_mode==31) {
cPar.WriteMatrix(U, "eigenU");
cPar.WriteVector(eval, "eigenD");
} else {
CalcUtX (U, W, UtW);
CalcUtX (U, Y, UtY);
if (cPar.n_ph==1) {
gsl_vector_view beta=gsl_matrix_row (B, 0);
gsl_vector_view se_beta=gsl_matrix_row (se_B, 0);
gsl_vector_view UtY_col=gsl_matrix_column (UtY, 0);
CalcLambda ('L', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_mle_null, cPar.logl_mle_H0);
CalcLmmVgVeBeta (eval, UtW, &UtY_col.vector, cPar.l_mle_null, cPar.vg_mle_null, cPar.ve_mle_null, &beta.vector, &se_beta.vector);
cPar.beta_mle_null.clear();
cPar.se_beta_mle_null.clear();
for (size_t i=0; i<B->size2; i++) {
cPar.beta_mle_null.push_back(gsl_matrix_get(B, 0, i) );
cPar.se_beta_mle_null.push_back(gsl_matrix_get(se_B, 0, i) );
}
CalcLambda ('R', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_remle_null, cPar.logl_remle_H0);
CalcLmmVgVeBeta (eval, UtW, &UtY_col.vector, cPar.l_remle_null, cPar.vg_remle_null, cPar.ve_remle_null, &beta.vector, &se_beta.vector);
cPar.beta_remle_null.clear();
cPar.se_beta_remle_null.clear();
for (size_t i=0; i<B->size2; i++) {
cPar.beta_remle_null.push_back(gsl_matrix_get(B, 0, i) );
cPar.se_beta_remle_null.push_back(gsl_matrix_get(se_B, 0, i) );
}
CalcPve (eval, UtW, &UtY_col.vector, cPar.l_remle_null, cPar.trace_G, cPar.pve_null, cPar.pve_se_null);
cPar.PrintSummary();
if (cPar.a_mode==5) {
gsl_vector *Utu_hat=gsl_vector_alloc (Y->size1);
gsl_vector *Ute_hat=gsl_vector_alloc (Y->size1);
gsl_vector *u_hat=gsl_vector_alloc (Y->size1);
gsl_vector *e_hat=gsl_vector_alloc (Y->size1);
gsl_vector *y_hat=gsl_vector_alloc (Y->size1);
gsl_vector_memcpy (y_hat, &UtY_col.vector);
gsl_blas_dgemv (CblasNoTrans, -1.0, UtW, &beta.vector, 1.0, y_hat);
double d, u, e;
for (size_t i=0; i<eval->size; i++) {
d=gsl_vector_get (eval, i);
u=cPar.l_remle_null*d/(cPar.l_remle_null*d+1.0)*gsl_vector_get(y_hat, i);
e=1.0/(cPar.l_remle_null*d+1.0)*gsl_vector_get(y_hat, i);
gsl_vector_set (Utu_hat, i, u);
gsl_vector_set (Ute_hat, i, e);
}
gsl_blas_dgemv (CblasNoTrans, 1.0, U, Utu_hat, 0.0, u_hat);
gsl_blas_dgemv (CblasNoTrans, 1.0, U, Ute_hat, 0.0, e_hat);
cPar.WriteVector(u_hat, "residU");
cPar.WriteVector(e_hat, "residE");
gsl_vector_free(u_hat);
gsl_vector_free(e_hat);
gsl_vector_free(y_hat);
}
}
if (cPar.a_mode==1 || cPar.a_mode==2 || cPar.a_mode==3 || cPar.a_mode==4) {
if (cPar.n_ph==1) {
LMM cLmm;
cLmm.CopyFromParam(cPar);
gsl_vector_view Y_col=gsl_matrix_column (Y, 0);
gsl_vector_view UtY_col=gsl_matrix_column (UtY, 0);
if (!cPar.file_gene.empty()) {
cLmm.AnalyzeGene (U, eval, UtW, &UtY_col.vector, W, &Y_col.vector); //y is the predictor, not the phenotype
} else if (!cPar.file_bfile.empty()) {
cLmm.AnalyzePlink (U, eval, UtW, &UtY_col.vector, W, &Y_col.vector);
} else {
cLmm.AnalyzeBimbam (U, eval, UtW, &UtY_col.vector, W, &Y_col.vector);
}
cLmm.WriteFiles();
cLmm.CopyToParam(cPar);
} else {
// MVLMM cMvlmm;
// cMvlmm.CopyFromParam(cPar);
//
// if (!cPar.file_bfile.empty()) {
// cMvlmm.AnalyzePlink (U, eval, UtW, UtY);
// } else {
// cMvlmm.AnalyzeBimbam (U, eval, UtW, UtY);
// }
//
// cMvlmm.WriteFiles();
// cMvlmm.CopyToParam(cPar);
}
}
}
gsl_matrix_free (Y);
gsl_matrix_free (W);
gsl_matrix_free(B);
gsl_matrix_free(se_B);
gsl_matrix_free (G);
gsl_matrix_free (U);
gsl_matrix_free (UtW);
gsl_matrix_free (UtY);
gsl_vector_free (eval);
}
cPar.time_total=(clock()-time_begin)/(double(CLOCKS_PER_SEC)*60.0);
return;
}
void GEMMA::WriteLog (int argc, char ** argv, PARAM &cPar)
{
string file_str;
file_str="./output/"+cPar.file_out;
file_str+=".log.txt";
ofstream outfile (file_str.c_str(), ofstream::out);
if (!outfile) {cout<<"error writing log file: "<<file_str.c_str()<<endl; return;}
outfile<<"##"<<endl;
outfile<<"## GEMMA Version = "<<version<<endl;
outfile<<"##"<<endl;
outfile<<"## Command Line Input = ";
for(int i = 1; i < argc; i++) {
outfile<<argv[i]<<" ";
}
outfile<<endl;
outfile<<"##"<<endl;
outfile<<"## Summary Statistics:"<<endl;
outfile<<"## number of total individuals = "<<cPar.ni_total<<endl;
if (cPar.a_mode==43) {
outfile<<"## number of analyzed individuals = "<<cPar.ni_cvt<<endl;
outfile<<"## number of individuals with full phenotypes = "<<cPar.ni_test<<endl;
} else {
outfile<<"## number of analyzed individuals = "<<cPar.ni_test<<endl;
}
outfile<<"## number of covariates = "<<cPar.n_cvt<<endl;
outfile<<"## number of phenotypes = "<<cPar.n_ph<<endl;
if (cPar.a_mode==43) {
outfile<<"## number of observed data = "<<cPar.np_obs<<endl;
outfile<<"## number of missing data = "<<cPar.np_miss<<endl;
}
if (!(cPar.file_gene).empty()) {
outfile<<"## number of total genes = "<<cPar.ng_total<<endl;
outfile<<"## number of analyzed genes = "<<cPar.ng_test<<endl;
} else if (cPar.file_epm.empty()) {
outfile<<"## number of total SNPs = "<<cPar.ns_total<<endl;
outfile<<"## number of analyzed SNPs = "<<cPar.ns_test<<endl;
} else {
outfile<<"## number of analyzed SNPs = "<<cPar.ns_test<<endl;
}
if (cPar.a_mode==13) {
outfile<<"## number of cases = "<<cPar.ni_case<<endl;
outfile<<"## number of controls = "<<cPar.ni_control<<endl;
}
if (cPar.a_mode==1 || cPar.a_mode==2 || cPar.a_mode==3 || cPar.a_mode==4 || cPar.a_mode==5 || cPar.a_mode==11 || cPar.a_mode==12 || cPar.a_mode==13) {
outfile<<"## REMLE log-likelihood in the null model = "<<cPar.logl_remle_H0<<endl;
outfile<<"## MLE log-likelihood in the null model = "<<cPar.logl_mle_H0<<endl;
if (cPar.n_ph==1) {
//outfile<<"## lambda REMLE estimate in the null (linear mixed) model = "<<cPar.l_remle_null<<endl;
//outfile<<"## lambda MLE estimate in the null (linear mixed) model = "<<cPar.l_mle_null<<endl;
outfile<<"## pve estimate in the null model = "<<cPar.pve_null<<endl;
outfile<<"## se(pve) in the null model = "<<cPar.pve_se_null<<endl;
outfile<<"## vg estimate in the null model = "<<cPar.vg_remle_null<<endl;
outfile<<"## ve estimate in the null model = "<<cPar.ve_remle_null<<endl;
outfile<<"## beta estimate in the null model = ";
for (size_t i=0; i<cPar.beta_remle_null.size(); i++) {
outfile<<" "<<cPar.beta_remle_null[i];
}
outfile<<endl;
outfile<<"## se(beta) = ";
for (size_t i=0; i<cPar.se_beta_remle_null.size(); i++) {
outfile<<" "<<cPar.se_beta_remle_null[i];
}
outfile<<endl;
} else {
size_t c;
outfile<<"## REMLE estimate for Vg in the null model: "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<=i; j++) {
c=(2*cPar.n_ph-min(i,j)+1)*min(i,j)/2+max(i,j)-min(i,j);
outfile<<cPar.Vg_remle_null[c]<<"\t";
}
outfile<<endl;
}
outfile<<"## se(Vg): "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<=i; j++) {
c=(2*cPar.n_ph-min(i,j)+1)*min(i,j)/2+max(i,j)-min(i,j);
outfile<<sqrt(cPar.VVg_remle_null[c])<<"\t";
}
outfile<<endl;
}
outfile<<"## REMLE estimate for Ve in the null model: "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<=i; j++) {
c=(2*cPar.n_ph-min(i,j)+1)*min(i,j)/2+max(i,j)-min(i,j);
outfile<<cPar.Ve_remle_null[c]<<"\t";
}
outfile<<endl;
}
outfile<<"## se(Ve): "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<=i; j++) {
c=(2*cPar.n_ph-min(i,j)+1)*min(i,j)/2+max(i,j)-min(i,j);
outfile<<sqrt(cPar.VVe_remle_null[c])<<"\t";
}
outfile<<endl;
}
outfile<<"## MLE estimate for Vg in the null model: "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<cPar.n_ph; j++) {
c=(2*cPar.n_ph-min(i,j)+1)*min(i,j)/2+max(i,j)-min(i,j);
outfile<<cPar.Vg_mle_null[c]<<"\t";
}
outfile<<endl;
}
outfile<<"## se(Vg): "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<=i; j++) {
c=(2*cPar.n_ph-min(i,j)+1)*min(i,j)/2+max(i,j)-min(i,j);
outfile<<sqrt(cPar.VVg_mle_null[c])<<"\t";
}
outfile<<endl;
}
outfile<<"## MLE estimate for Ve in the null model: "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<cPar.n_ph; j++) {
c=(2*cPar.n_ph-min(i,j)+1)*min(i,j)/2+max(i,j)-min(i,j);
outfile<<cPar.Ve_mle_null[c]<<"\t";
}
outfile<<endl;
}
outfile<<"## se(Ve): "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<=i; j++) {
c=(2*cPar.n_ph-min(i,j)+1)*min(i,j)/2+max(i,j)-min(i,j);
outfile<<sqrt(cPar.VVe_mle_null[c])<<"\t";
}
outfile<<endl;
}
outfile<<"## estimate for B (d by c) in the null model (columns correspond to the covariates provided in the file): "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<cPar.n_cvt; j++) {
c=i*cPar.n_cvt+j;
outfile<<cPar.beta_remle_null[c]<<"\t";
}
outfile<<endl;
}
outfile<<"## se(B): "<<endl;
for (size_t i=0; i<cPar.n_ph; i++) {
for (size_t j=0; j<cPar.n_cvt; j++) {
c=i*cPar.n_cvt+j;
outfile<<cPar.se_beta_remle_null[c]<<"\t";
}
outfile<<endl;
}
}
}
if (cPar.a_mode==11 || cPar.a_mode==12 || cPar.a_mode==13) {
outfile<<"## estimated mean = "<<cPar.pheno_mean<<endl;
}
if (cPar.a_mode==11 || cPar.a_mode==13) {
outfile<<"##"<<endl;
outfile<<"## MCMC related:"<<endl;
outfile<<"## initial value of h = "<<cPar.cHyp_initial.h<<endl;
outfile<<"## initial value of rho = "<<cPar.cHyp_initial.rho<<endl;
outfile<<"## initial value of pi = "<<exp(cPar.cHyp_initial.logp)<<endl;
outfile<<"## initial value of |gamma| = "<<cPar.cHyp_initial.n_gamma<<endl;
outfile<<"## random seed = "<<cPar.randseed<<endl;
outfile<<"## acceptance ratio = "<<(double)cPar.n_accept/(double)((cPar.w_step+cPar.s_step)*cPar.n_mh)<<endl;
}
outfile<<"##"<<endl;
outfile<<"## Computation Time:"<<endl;
outfile<<"## total computation time = "<<cPar.time_total<<" min "<<endl;
outfile<<"## computation time break down: "<<endl;
if (cPar.a_mode==1 || cPar.a_mode==2 || cPar.a_mode==3 || cPar.a_mode==4 || cPar.a_mode==5 || cPar.a_mode==11 || cPar.a_mode==12 || cPar.a_mode==13) {
outfile<<"## time on eigen-decomposition = "<<cPar.time_eigen<<" min "<<endl;
outfile<<"## time on calculating UtX = "<<cPar.time_UtX<<" min "<<endl;
}
if (cPar.a_mode==1 || cPar.a_mode==2 || cPar.a_mode==3 || cPar.a_mode==4) {
outfile<<"## time on optimization = "<<cPar.time_opt<<" min "<<endl;
}
if (cPar.a_mode==11 || cPar.a_mode==13) {
outfile<<"## time on mcmc = "<<cPar.time_opt<<" min "<<endl;
outfile<<"## time on Omega = "<<cPar.time_Omega<<" min "<<endl;
}
if (cPar.a_mode==41 || cPar.a_mode==42) {
outfile<<"## time on eigen-decomposition = "<<cPar.time_eigen<<" min "<<endl;
}
if (cPar.a_mode==43) {
outfile<<"## time on eigen-decomposition = "<<cPar.time_eigen<<" min "<<endl;
outfile<<"## time on predicting phenotypes = "<<cPar.time_opt<<" min "<<endl;
}
outfile<<"##"<<endl;
outfile.close();
outfile.clear();
return;
}