forked from zjunlp/DeepKE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
176 lines (141 loc) · 6.74 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import logging
from collections import OrderedDict
from typing import List, Dict
from transformers import BertTokenizer
from serializer import Serializer
from vocab import Vocab
from utils import save_pkl, load_csv
logger = logging.getLogger(__name__)
def _handle_pos_limit(pos: List[int], limit: int) -> List[int]:
for i, p in enumerate(pos):
if p > limit:
pos[i] = limit
if p < -limit:
pos[i] = -limit
return [p + limit + 1 for p in pos]
def _add_pos_seq(train_data: List[Dict], cfg):
for d in train_data:
entities_idx = [d['head_idx'], d['tail_idx']
] if d['head_idx'] < d['tail_idx'] else [d['tail_idx'], d['head_idx']]
d['head_pos'] = list(map(lambda i: i - d['head_idx'], list(range(d['seq_len']))))
d['head_pos'] = _handle_pos_limit(d['head_pos'], int(cfg.pos_limit))
d['tail_pos'] = list(map(lambda i: i - d['tail_idx'], list(range(d['seq_len']))))
d['tail_pos'] = _handle_pos_limit(d['tail_pos'], int(cfg.pos_limit))
if cfg.model_name == 'cnn':
if cfg.use_pcnn:
# 当句子无法分隔成三段时,无法使用PCNN
# 比如: [head, ... tail] or [... head, tail, ...] 无法使用统一方式 mask 分段
d['entities_pos'] = [1] * (entities_idx[0] + 1) + [2] * (entities_idx[1] - entities_idx[0] - 1) +\
[3] * (d['seq_len'] - entities_idx[1])
def _convert_tokens_into_index(data: List[Dict], vocab):
unk_str = '[UNK]'
unk_idx = vocab.word2idx[unk_str]
for d in data:
d['token2idx'] = [vocab.word2idx.get(i, unk_idx) for i in d['tokens']]
d['seq_len'] = len(d['token2idx'])
def _serialize_sentence(data: List[Dict], serial, cfg):
for d in data:
sent = d['sentence'].strip()
sent = sent.replace(d['head'], ' head ', 1).replace(d['tail'], ' tail ', 1)
d['tokens'] = serial(sent, never_split=['head', 'tail'])
head_idx, tail_idx = d['tokens'].index('head'), d['tokens'].index('tail')
d['head_idx'], d['tail_idx'] = head_idx, tail_idx
if cfg.replace_entity_with_type:
if cfg.replace_entity_with_scope:
d['tokens'][head_idx], d['tokens'][tail_idx] = 'HEAD_' + d['head_type'], 'TAIL_' + d['tail_type']
else:
d['tokens'][head_idx], d['tokens'][tail_idx] = d['head_type'], d['tail_type']
else:
if cfg.replace_entity_with_scope:
d['tokens'][head_idx], d['tokens'][tail_idx] = 'HEAD', 'TAIL'
else:
d['tokens'][head_idx], d['tokens'][tail_idx] = d['head'], d['tail']
def _lm_serialize(data: List[Dict], cfg):
logger.info('use bert tokenizer...')
tokenizer = BertTokenizer.from_pretrained(cfg.lm_file)
for d in data:
sent = d['sentence'].strip()
sent = sent.replace(d['head'], d['head_type'], 1).replace(d['tail'], d['tail_type'], 1)
sent += '[SEP]' + d['head'] + '[SEP]' + d['tail']
d['token2idx'] = tokenizer.encode(sent, add_special_tokens=True)
d['seq_len'] = len(d['token2idx'])
def _add_relation_data(rels: Dict, data: List) -> None:
for d in data:
d['rel2idx'] = rels[d['relation']]['index']
d['head_type'] = rels[d['relation']]['head_type']
d['tail_type'] = rels[d['relation']]['tail_type']
def _handle_relation_data(relation_data: List[Dict]) -> Dict:
rels = OrderedDict()
relation_data = sorted(relation_data, key=lambda i: int(i['index']))
for d in relation_data:
rels[d['relation']] = {
'index': int(d['index']),
'head_type': d['head_type'],
'tail_type': d['tail_type'],
}
return rels
def preprocess(cfg):
logger.info('===== start preprocess data =====')
train_fp = os.path.join(cfg.cwd, cfg.data_path, 'train.csv')
valid_fp = os.path.join(cfg.cwd, cfg.data_path, 'valid.csv')
test_fp = os.path.join(cfg.cwd, cfg.data_path, 'test.csv')
relation_fp = os.path.join(cfg.cwd, cfg.data_path, 'relation.csv')
logger.info('load raw files...')
train_data = load_csv(train_fp)
valid_data = load_csv(valid_fp)
test_data = load_csv(test_fp)
relation_data = load_csv(relation_fp)
logger.info('convert relation into index...')
rels = _handle_relation_data(relation_data)
_add_relation_data(rels, train_data)
_add_relation_data(rels, valid_data)
_add_relation_data(rels, test_data)
logger.info('verify whether use pretrained language models...')
if cfg.model_name == 'lm':
logger.info('use pretrained language models serialize sentence...')
_lm_serialize(train_data, cfg)
_lm_serialize(valid_data, cfg)
_lm_serialize(test_data, cfg)
else:
logger.info('serialize sentence into tokens...')
serializer = Serializer(do_chinese_split=cfg.chinese_split, do_lower_case=True)
serial = serializer.serialize
_serialize_sentence(train_data, serial, cfg)
_serialize_sentence(valid_data, serial, cfg)
_serialize_sentence(test_data, serial, cfg)
logger.info('build vocabulary...')
vocab = Vocab('word')
train_tokens = [d['tokens'] for d in train_data]
valid_tokens = [d['tokens'] for d in valid_data]
test_tokens = [d['tokens'] for d in test_data]
sent_tokens = [*train_tokens, *valid_tokens, *test_tokens]
for sent in sent_tokens:
vocab.add_words(sent)
vocab.trim(min_freq=cfg.min_freq)
logger.info('convert tokens into index...')
_convert_tokens_into_index(train_data, vocab)
_convert_tokens_into_index(valid_data, vocab)
_convert_tokens_into_index(test_data, vocab)
logger.info('build position sequence...')
_add_pos_seq(train_data, cfg)
_add_pos_seq(valid_data, cfg)
_add_pos_seq(test_data, cfg)
logger.info('save data for backup...')
os.makedirs(os.path.join(cfg.cwd, cfg.out_path), exist_ok=True)
train_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'train.pkl')
valid_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'valid.pkl')
test_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'test.pkl')
save_pkl(train_data, train_save_fp)
save_pkl(valid_data, valid_save_fp)
save_pkl(test_data, test_save_fp)
if cfg.model_name != 'lm':
vocab_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'vocab.pkl')
vocab_txt = os.path.join(cfg.cwd, cfg.out_path, 'vocab.txt')
save_pkl(vocab, vocab_save_fp)
logger.info('save vocab in txt file, for watching...')
with open(vocab_txt, 'w', encoding='utf-8') as f:
f.write(os.linesep.join(vocab.word2idx.keys()))
logger.info('===== end preprocess data =====')
if __name__ == '__main__':
pass