forked from xinyu1205/recognize-anything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtag2text.py
370 lines (309 loc) · 14.4 KB
/
tag2text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
'''
* The Tag2Text Model
* Written by Xinyu Huang
'''
import numpy as np
import json
import torch
import warnings
from torch import nn
from .bert import BertConfig, BertModel, BertLMHeadModel
from .swin_transformer import SwinTransformer
from .utils import *
warnings.filterwarnings("ignore")
class Tag2Text(nn.Module):
def __init__(self,
med_config=f'{CONFIG_PATH}/configs/med_config.json',
image_size=384,
vit='base',
vit_grad_ckpt=False,
vit_ckpt_layer=0,
prompt='a picture of ',
threshold=0.68,
delete_tag_index=[127,2961, 3351, 3265, 3338, 3355, 3359],
tag_list=f'{CONFIG_PATH}/data/tag_list.txt'):
r""" Tag2Text inference module, both captioning and tagging are included.
Tag2Text is an efficient and controllable vision-language pre-training framework.
Described in the paper "Tag2Text: Guiding Vision-Language Model via Image Tagging" https://arxiv.org/abs/2303.05657
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
threshold (int): tagging threshold
delete_tag_index (list): delete some tags that may disturb captioning
"""
super().__init__()
# create image encoder
if vit == 'swin_b':
if image_size == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
elif image_size == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
vision_config = read_json(vision_config_path)
assert image_size == vision_config['image_res']
# assert config['patch_size'] == 32
vision_width = vision_config['vision_width']
self.visual_encoder = SwinTransformer(
img_size=vision_config['image_res'],
patch_size=4,
in_chans=3,
embed_dim=vision_config['embed_dim'],
depths=vision_config['depths'],
num_heads=vision_config['num_heads'],
window_size=vision_config['window_size'],
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False)
else:
self.visual_encoder, vision_width = create_vit(
vit, image_size, vit_grad_ckpt, vit_ckpt_layer)
# create tokenzier
self.tokenizer = init_tokenizer()
# Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
# create image-tag interaction encoder
encoder_config = BertConfig.from_json_file(med_config)
encoder_config.encoder_width = vision_width
self.tag_encoder = BertModel(config=encoder_config,
add_pooling_layer=False)
# create image-tag-text decoder
decoder_config = BertConfig.from_json_file(med_config)
self.text_decoder = BertLMHeadModel(config=decoder_config)
# delete some tags that may disturb captioning
# 127: "quarter"; 2961: "back"; 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one"
self.delete_tag_index = delete_tag_index
self.prompt = prompt
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
# load tag list
self.tag_list = self.load_tag_list(tag_list)
# create image-tag recognition decoder
self.threshold = threshold
self.num_class = len(self.tag_list)
q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
q2l_config.encoder_width = vision_width
self.tagging_head = BertModel(config=q2l_config,
add_pooling_layer=False)
self.tagging_head.resize_token_embeddings(len(self.tokenizer))
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
self.fc = GroupWiseLinear(self.num_class,
q2l_config.hidden_size,
bias=True)
self.del_selfattention()
self.tagging_loss_function = AsymmetricLoss(gamma_neg=7,
gamma_pos=0,
clip=0.05)
# share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
' ')
# adjust thresholds for some tags
# default threshold: 0.68
# 2701: "person"; 2828: "man"; 1167: "woman";
tag_thrshold = {2701:0.7, 2828: 0.7, 1167: 0.7}
self.class_threshold = torch.ones(self.num_class) * self.threshold
for key,value in tag_thrshold.items():
self.class_threshold[key] = value
def load_tag_list(self, tag_list_file):
with open(tag_list_file, 'r') as f:
tag_list = f.read().splitlines()
tag_list = np.array(tag_list)
return tag_list
# delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
def del_selfattention(self):
del self.tagging_head.embeddings
for layer in self.tagging_head.encoder.layer:
del layer.attention
def forward(self, image, caption, tag):
"""
call function as forward
Args:
image: type: torch.Tensor shape: batch_size * 3 * 384 * 384
caption: type: list[string] len: batch_size
tag: type: torch.Tensor shape: batch * class_num (e.g. 3429) value: positive sample is 1.0, negative sample is 0.0
Returns:
loss: type: torch.Tensor
"""
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
##================= Image Tagging ================##
bs = image_embeds.shape[0]
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
tagging_embed = self.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
logits = self.fc(tagging_embed[0])
loss_tag = self.tagging_loss_function(logits, tag)
##================= Image-Tag-Text Generation ================##
tag = tag.cpu().numpy()
tag_input = []
for b in range(bs):
index = np.argwhere(tag[b] == 1)
token = self.tag_list[index].squeeze(axis=1)
tag_input.append(' | '.join(token))
# tokenizer input tags
tag_input_tokenzier = self.tokenizer(tag_input,
padding='max_length',
truncation=True,
max_length=40,
return_tensors="pt").to(
image.device)
encoder_input_ids = tag_input_tokenzier.input_ids
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
# put input tag into image-tag interaction encoder to interact with image embeddings
output_tagembedding = self.tag_encoder(
encoder_input_ids,
attention_mask=tag_input_tokenzier.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
text = self.tokenizer(caption,
padding='longest',
truncation=True,
max_length=40,
return_tensors="pt").to(
image.device)
decoder_input_ids = text.input_ids
decoder_input_ids[:,0] = self.tokenizer.bos_token_id
decoder_targets = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100)
decoder_targets[:,:self.prompt_length] = -100
decoder_output = self.text_decoder(decoder_input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = output_tagembedding.last_hidden_state,
encoder_attention_mask = None,
labels = decoder_targets,
return_dict = True,
)
loss_t2t = decoder_output.loss
# balance loss scale
loss = loss_t2t + loss_tag/(loss_tag/loss_t2t).detach()
return loss
def generate(self,
image,
sample=False,
num_beams=3,
max_length=30,
min_length=10,
top_p=0.9,
repetition_penalty=1.0,
tag_input=None,
return_tag_predict=False):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
# if not user specified tags, recognized image tags using image-tag recogntiion decoder
if tag_input == None:
bs = image_embeds.shape[0]
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
tagging_embed = self.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
logits = self.fc(tagging_embed[0])
targets = torch.where(
torch.sigmoid(logits) > self.class_threshold.to(image.device),
torch.tensor(1.0).to(image.device),
torch.zeros(self.num_class).to(image.device))
tag = targets.cpu().numpy()
# delete some tags that may disturb captioning
tag[:, self.delete_tag_index] = 0
tag_input = []
for b in range(bs):
index = np.argwhere(tag[b] == 1)
token = self.tag_list[index].squeeze(axis=1)
tag_input.append(' | '.join(token))
tag_output = tag_input
# beam search for text generation(default)
if not sample:
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
tag_input_temp = []
for tag in tag_input:
for i in range(num_beams):
tag_input_temp.append(tag)
tag_input = tag_input_temp
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
# tokenizer input tags
tag_input_tokenzier = self.tokenizer(tag_input,
padding='max_length',
truncation=True,
max_length=40,
return_tensors="pt").to(
image.device)
encoder_input_ids = tag_input_tokenzier.input_ids
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
# put input tag into image-tag interaction encoder to interact with image embeddings
output_tagembedding = self.tag_encoder(
encoder_input_ids,
attention_mask=tag_input_tokenzier.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
# prompt trick for better captioning, followed BLIP
prompt = [self.prompt] * image.size(0)
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(
image.device)
input_ids[:, 0] = self.tokenizer.bos_token_id
input_ids = input_ids[:, :-1]
if sample:
# nucleus sampling
model_kwargs = {
"encoder_hidden_states": output_tagembedding.last_hidden_state,
"encoder_attention_mask": None
}
outputs = self.text_decoder.generate(
input_ids=input_ids,
max_length=max_length,
min_length=min_length,
do_sample=True,
top_p=top_p,
num_return_sequences=1,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=1.1,
**model_kwargs)
else:
# beam search (default)
model_kwargs = {
"encoder_hidden_states": output_tagembedding.last_hidden_state,
"encoder_attention_mask": None
}
outputs = self.text_decoder.generate(
input_ids=input_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
captions = []
for output in outputs:
caption = self.tokenizer.decode(output, skip_special_tokens=True)
captions.append(caption[len(self.prompt):])
if return_tag_predict == True:
return captions, tag_output
return captions
# load Tag2Text pretrained model parameters
def tag2text(pretrained='', **kwargs):
model = Tag2Text(**kwargs)
if pretrained:
if kwargs['vit'] == 'swin_b':
model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
else:
model, msg = load_checkpoint(model, pretrained)
print('vit:', kwargs['vit'])
# print('msg', msg)
return model