-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdbscan.m
63 lines (46 loc) · 1.29 KB
/
dbscan.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
%DBSCAN ALGORITHM
function [Kab, alnoise]=dbscan(X,eps,MinP)
C=0;
n=size(X,1);
Kab=zeros(n,1);
D=pdist2(X,X);
alreadyin=false(n,1);
alnoise=false(n,1);
for i=1:n
if ~alreadyin(i)
alreadyin(i)=true;
Neighbors=RegionQuery(i);
if numel(Neighbors)<MinP
% X(i,:) is NOISE
alnoise(i)=true;
else
C=C+1;
ExpandCluster(i,Neighbors,C);
end
end
end
function ExpandCluster(i,Neighbors,C)
Kab(i)=C;
k = 1;
while true
j = Neighbors(k);
if ~alreadyin(j)
alreadyin(j)=true;
Neighbors2=RegionQuery(j);
if numel(Neighbors2)>=MinP
Neighbors=[Neighbors Neighbors2]; %#ok
end
end
if Kab(j)==0
Kab(j)=C;
end
k = k + 1;
if k > numel(Neighbors)
break;
end
end
end
function Neighbors=RegionQuery(i)
Neighbors=find(D(i,:)<=eps);
end
end