-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilms.py
48 lines (34 loc) · 1.05 KB
/
films.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import pandas
from pandas import DataFrame
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
data = pandas.read_csv('cost_revenue_clean.csv')
data.describe()
3.29e7
X = DataFrame(data, columns=['production_budget_usd'])
y = DataFrame(data, columns=['worldwide_gross_usd'])
plt.figure(figsize=(10,6))
plt.scatter(X, y, alpha=0.3)
plt.title('Film Cost vs Global Revenue')
plt.xlabel('Production Budget $')
plt.ylabel('Worldwide Gross $')
plt.ylim(0, 3000000000)
plt.xlim(0, 450000000)
plt.show()
regression = LinearRegression()
regression.fit(X, y)
regression.coef_ # theta_1
#Intercept
regression.intercept_
plt.figure(figsize=(10,6))
plt.scatter(X, y, alpha=0.3)
# Adding the regression line here:
plt.plot(X, regression.predict(X), color='red', linewidth=3)
plt.title('Film Cost vs Global Revenue')
plt.xlabel('Production Budget $')
plt.ylabel('Worldwide Gross $')
plt.ylim(0, 3000000000)
plt.xlim(0, 450000000)
plt.show()
#Getting r square from Regression
regression.score(X, y)