diff --git a/examples/data/landsat_era5_sample.tif b/examples/data/landsat_era5_sample.tif
index b06db88..85babbc 100644
Binary files a/examples/data/landsat_era5_sample.tif and b/examples/data/landsat_era5_sample.tif differ
diff --git a/examples/notebooks/01_geeet.ipynb b/examples/notebooks/01_geeet.ipynb
index 25d93fc..068b864 100644
--- a/examples/notebooks/01_geeet.ipynb
+++ b/examples/notebooks/01_geeet.ipynb
@@ -33,7 +33,7 @@
},
{
"cell_type": "code",
- "execution_count": 70,
+ "execution_count": 1,
"id": "e21eda87",
"metadata": {},
"outputs": [
@@ -42,15 +42,15 @@
"output_type": "stream",
"text": [
"Energy balance components et_list et_np\n",
- "Net radiation (W/m²): [524.5 104.5] | [524.5 104.5]\n",
- "Net radiation (W/m²) from canopy source: [366.7 73.1] | [366.7 73.1]\n",
- "Net radiation (W/m²) from soil source: [157.8 31.4] | [157.8 31.4]\n",
- "Latent heat flux (W/m²): [405.5 88.5] | [405.5 88.5]\n",
- "Latent heat flux (W/m²) from canopy source: [320.1 63.3] | [320.1 63.3]\n",
- "Latent heat flux (W/m²) from soil source: [85.4 25.2] | [85.4 25.2]\n",
- "Sensible heat flux (W/m²) from canopy source: [46.7 9.8] | [46.7 9.8]\n",
- "Sensible heat flux (W/m²) from soil source: [28.5 -2.5] | [28.5 -2.5]\n",
- "Ground heat flux (W/m²): [43.9 8.7] | [43.9 8.7]\n"
+ "Net radiation (W/m²): [574.5 104.5] | [574.5 104.5]\n",
+ "Net radiation (W/m²) from canopy source: [401.7 73.1] | [401.7 73.1]\n",
+ "Net radiation (W/m²) from soil source: [172.8 31.4] | [172.8 31.4]\n",
+ "Latent heat flux (W/m²): [336.5 77.9] | [336.5 77.9]\n",
+ "Latent heat flux (W/m²) from canopy source: [310.5 56. ] | [310.5 56. ]\n",
+ "Latent heat flux (W/m²) from soil source: [26. 21.8] | [26. 21.8]\n",
+ "Sensible heat flux (W/m²) from canopy source: [91.2 17. ] | [91.2 17. ]\n",
+ "Sensible heat flux (W/m²) from soil source: [98.7 0.9] | [98.7 0.9]\n",
+ "Ground heat flux (W/m²): [48.1 8.7] | [48.1 8.7]\n"
]
}
],
@@ -63,10 +63,11 @@
" Alb = [0.2, 0.2], # Albedo (-)\n",
" NDVI = [0.8, 0.8], # NDVI (-)\n",
" P = [95500, 95500], # Surface pressure (Pa)\n",
- " Ta = [293, 293], # Air temperature (K)\n",
+ " Ta = [290, 290], # Air temperature (K)\n",
+ " Td = [287, 287], # Dewpoint temperature (K)\n",
" U = [5,5], # Wind speed (m/s)\n",
" Sdn = [800, 400], # Shortwave downward radiation (W/m²)\n",
- " Ldn = [300, 200] # Longwave downward radiation (W/m²)\n",
+ " Ldn = [350, 200] # Longwave downward radiation (W/m²)\n",
")\n",
"np_inputs = {key:np.array(value) for key,value in list_inputs.items()}\n",
"\n",
@@ -111,7 +112,7 @@
},
{
"cell_type": "code",
- "execution_count": 71,
+ "execution_count": 2,
"id": "005eea64",
"metadata": {},
"outputs": [
@@ -481,45 +482,45 @@
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
- "
<xarray.Dataset> Size: 384B\n",
+ "<xarray.Dataset> Size: 400B\n",
"Dimensions: (dim_0: 2)\n",
"Dimensions without coordinates: dim_0\n",
- "Data variables: (12/24)\n",
+ "Data variables: (12/25)\n",
" albedo (dim_0) float64 16B 0.2 0.2\n",
" NDVI (dim_0) float64 16B 0.8 0.8\n",
" radiometric_temperature (dim_0) int64 16B 295 295\n",
- " air_temperature (dim_0) int64 16B 293 293\n",
+ " air_temperature (dim_0) int64 16B 290 290\n",
+ " dewpoint_temperature (dim_0) int64 16B 287 287\n",
" surface_pressure (dim_0) int64 16B 95500 95500\n",
- " wind_speed (dim_0) int64 16B 5 5\n",
" ... ...\n",
- " Tc (dim_0) float64 16B 294.7 295.2\n",
- " Tac (dim_0) float64 16B 296.0 294.5\n",
+ " Tc (dim_0) float64 16B 293.2 295.1\n",
+ " Tac (dim_0) float64 16B 300.3 294.8\n",
" ra (dim_0) float64 16B 40.87 297.9\n",
" rs (dim_0) float64 16B 79.94 192.4\n",
" rx (dim_0) float64 16B 11.68 31.11\n",
- " it (dim_0) float64 16B 0.0 2.0
albedo
(dim_0)
float64
0.2 0.2
NDVI
(dim_0)
float64
0.8 0.8
radiometric_temperature
(dim_0)
int64
295 295
air_temperature
(dim_0)
int64
293 293
surface_pressure
(dim_0)
int64
95500 95500
wind_speed
(dim_0)
int64
5 5
solar_radiation
(dim_0)
int64
800 400
thermal_radiation
(dim_0)
int64
300 200
LE
(dim_0)
float64
405.5 88.45
array([405.50141447, 88.45233344])
LEs
(dim_0)
float64
85.44 25.18
array([85.44079305, 25.18091216])
LEc
(dim_0)
float64
320.1 63.27
array([320.06062142, 63.27142128])
Hs
(dim_0)
float64
28.45 -2.486
array([28.45310293, -2.4856047 ])
Hc
(dim_0)
float64
46.65 9.803
array([46.65468721, 9.80287833])
G
(dim_0)
float64
43.91 8.75
array([43.9102763 , 8.74987384])
Rn
(dim_0)
float64
524.5 104.5
array([524.51948091, 104.51948091])
Rns
(dim_0)
float64
157.8 31.45
array([157.80417228, 31.4451813 ])
Rnc
(dim_0)
float64
366.7 73.07
array([366.71530863, 73.07429961])
Ts
(dim_0)
float64
296.0 294.5
array([296.00286442, 294.48648763])
Tc
(dim_0)
float64
294.7 295.2
array([294.66571186, 295.17057636])
Tac
(dim_0)
float64
296.0 294.5
array([296.00286442, 294.48648763])
ra
(dim_0)
float64
40.87 297.9
array([ 40.87043339, 297.89444327])
rs
(dim_0)
float64
79.94 192.4
array([ 79.941751 , 192.3644427])
rx
(dim_0)
float64
11.68 31.11
array([11.67500114, 31.10900394])
it
(dim_0)
float64
0.0 2.0
"
+ " it (dim_0) float64 16B 0.0 2.0
albedo
(dim_0)
float64
0.2 0.2
NDVI
(dim_0)
float64
0.8 0.8
radiometric_temperature
(dim_0)
int64
295 295
air_temperature
(dim_0)
int64
290 290
dewpoint_temperature
(dim_0)
int64
287 287
surface_pressure
(dim_0)
int64
95500 95500
wind_speed
(dim_0)
int64
5 5
solar_radiation
(dim_0)
int64
800 400
thermal_radiation
(dim_0)
int64
350 200
LE
(dim_0)
float64
336.5 77.85
array([336.52374332, 77.85470663])
LEs
(dim_0)
float64
26.04 21.82
array([26.03900353, 21.81803332])
LEc
(dim_0)
float64
310.5 56.04
array([310.48473979, 56.03667331])
Hs
(dim_0)
float64
98.71 0.8773
array([98.71186728, 0.87727414])
Hc
(dim_0)
float64
91.19 17.04
array([91.18783182, 17.0376263 ])
G
(dim_0)
float64
48.1 8.75
array([48.09603849, 8.74987384])
Rn
(dim_0)
float64
574.5 104.5
array([574.51948091, 104.51948091])
Rns
(dim_0)
float64
172.8 31.45
array([172.8469093, 31.4451813])
Rnc
(dim_0)
float64
401.7 73.07
array([401.67257161, 73.07429961])
Ts
(dim_0)
float64
300.3 294.8
array([300.32239655, 294.7653812 ])
Tc
(dim_0)
float64
293.2 295.1
array([293.22586782, 295.07808201])
Tac
(dim_0)
float64
300.3 294.8
array([300.32239655, 294.7653812 ])
ra
(dim_0)
float64
40.87 297.9
array([ 40.87043339, 297.89444327])
rs
(dim_0)
float64
79.94 192.4
array([ 79.941751 , 192.3644427])
rx
(dim_0)
float64
11.68 31.11
array([11.67500114, 31.10900394])
it
(dim_0)
float64
0.0 2.0
"
],
"text/plain": [
- " Size: 384B\n",
+ " Size: 400B\n",
"Dimensions: (dim_0: 2)\n",
"Dimensions without coordinates: dim_0\n",
- "Data variables: (12/24)\n",
+ "Data variables: (12/25)\n",
" albedo (dim_0) float64 16B 0.2 0.2\n",
" NDVI (dim_0) float64 16B 0.8 0.8\n",
" radiometric_temperature (dim_0) int64 16B 295 295\n",
- " air_temperature (dim_0) int64 16B 293 293\n",
+ " air_temperature (dim_0) int64 16B 290 290\n",
+ " dewpoint_temperature (dim_0) int64 16B 287 287\n",
" surface_pressure (dim_0) int64 16B 95500 95500\n",
- " wind_speed (dim_0) int64 16B 5 5\n",
" ... ...\n",
- " Tc (dim_0) float64 16B 294.7 295.2\n",
- " Tac (dim_0) float64 16B 296.0 294.5\n",
+ " Tc (dim_0) float64 16B 293.2 295.1\n",
+ " Tac (dim_0) float64 16B 300.3 294.8\n",
" ra (dim_0) float64 16B 40.87 297.9\n",
" rs (dim_0) float64 16B 79.94 192.4\n",
" rx (dim_0) float64 16B 11.68 31.11\n",
" it (dim_0) float64 16B 0.0 2.0"
]
},
- "execution_count": 71,
+ "execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -527,17 +528,21 @@
"source": [
"import xarray as xr\n",
"\n",
- "xr_inputs = xr.merge([\n",
- " xr.DataArray(list_inputs[\"Alb\"]).rename(\"albedo\"),\n",
- " xr.DataArray(list_inputs[\"NDVI\"]).rename(\"NDVI\"),\n",
- " xr.DataArray(list_inputs[\"Tr\"]).rename(\"radiometric_temperature\"),\n",
- " xr.DataArray(list_inputs[\"Ta\"]).rename(\"air_temperature\"),\n",
- " xr.DataArray(list_inputs[\"P\"]).rename(\"surface_pressure\"),\n",
- " xr.DataArray(list_inputs[\"U\"]).rename(\"wind_speed\"),\n",
- " xr.DataArray(list_inputs[\"Sdn\"]).rename(\"solar_radiation\"),\n",
- " xr.DataArray(list_inputs[\"Ldn\"]).rename(\"thermal_radiation\"),\n",
- " ])\n",
- " \n",
+ "band_names = {\n",
+ " \"Alb\": \"albedo\",\n",
+ " \"NDVI\":\"NDVI\",\n",
+ " \"Tr\":\"radiometric_temperature\",\n",
+ " \"Ta\":\"air_temperature\",\n",
+ " \"Td\":\"dewpoint_temperature\",\n",
+ " \"P\":\"surface_pressure\",\n",
+ " \"U\":\"wind_speed\",\n",
+ " \"Sdn\":\"solar_radiation\",\n",
+ " \"Ldn\":\"thermal_radiation\",\n",
+ "}\n",
+ " \n",
+ "xr_inputs = xr.merge(\n",
+ " [xr.DataArray(list_inputs[k]).rename(v) for k,v in band_names.items()])\n",
+ "\n",
"et_xr = geeet.tseb.tseb_series(xr_inputs, **scalar_inputs)\n",
"et_xr"
]
@@ -562,7 +567,7 @@
},
{
"cell_type": "code",
- "execution_count": 72,
+ "execution_count": 3,
"id": "bbfdd475",
"metadata": {},
"outputs": [],
@@ -582,10 +587,11 @@
" ee_images.append(\n",
" ee.Image(ee.Dictionary(x).toImage())\n",
" # Rename (same names as in the xarray example)\n",
- " .select([\"Alb\", \"NDVI\", \"Tr\", \"Ta\", \"P\", \"U\", \"Sdn\", \"Ldn\"],\n",
+ " .select([\"Alb\", \"NDVI\", \"Tr\", \"Td\",\"Ta\", \"P\", \"U\", \"Sdn\", \"Ldn\"],\n",
" [\"albedo\",\n",
" \"NDVI\",\n",
" \"radiometric_temperature\",\n",
+ " \"dewpoint_temperature\",\n",
" \"air_temperature\",\n",
" \"surface_pressure\",\n",
" \"wind_speed\",\n",
@@ -608,7 +614,7 @@
},
{
"cell_type": "code",
- "execution_count": 73,
+ "execution_count": 4,
"id": "88bf21ca",
"metadata": {},
"outputs": [],
@@ -626,7 +632,7 @@
},
{
"cell_type": "code",
- "execution_count": 74,
+ "execution_count": 5,
"id": "87243731",
"metadata": {},
"outputs": [
@@ -636,6 +642,7 @@
"['albedo',\n",
" 'NDVI',\n",
" 'radiometric_temperature',\n",
+ " 'dewpoint_temperature',\n",
" 'air_temperature',\n",
" 'surface_pressure',\n",
" 'wind_speed',\n",
@@ -662,7 +669,7 @@
" 'Rnc']"
]
},
- "execution_count": 74,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -681,7 +688,7 @@
},
{
"cell_type": "code",
- "execution_count": 75,
+ "execution_count": 6,
"id": "70843dab",
"metadata": {},
"outputs": [],
@@ -706,7 +713,7 @@
},
{
"cell_type": "code",
- "execution_count": 76,
+ "execution_count": 7,
"id": "9c83d1ee",
"metadata": {},
"outputs": [
@@ -714,15 +721,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Net radiation (W/m²): 524.52 | 524.52\n",
- "Net radiation (W/m²) from canopy source: 366.72 | 366.72\n",
- "Net radiation (W/m²) from soil source: 157.80 | 157.80\n",
- "Latent heat flux (W/m²): 405.50 | 405.50\n",
- "Latent heat flux (W/m²) from canopy source: 320.06 | 320.06\n",
- "Latent heat flux (W/m²) from soil source: 85.44 | 85.44\n",
- "Sensible heat flux (W/m²) from canopy source: 46.65 | 46.65\n",
- "Sensible heat flux (W/m²) from soil source: 28.45 | 28.45\n",
- "Ground heat flux (W/m²): 43.91 | 43.91\n"
+ "Net radiation (W/m²): 574.52 | 574.52\n",
+ "Net radiation (W/m²) from canopy source: 401.67 | 401.67\n",
+ "Net radiation (W/m²) from soil source: 172.85 | 172.85\n",
+ "Latent heat flux (W/m²): 336.52 | 336.52\n",
+ "Latent heat flux (W/m²) from canopy source: 310.48 | 310.48\n",
+ "Latent heat flux (W/m²) from soil source: 26.04 | 26.04\n",
+ "Sensible heat flux (W/m²) from canopy source: 91.19 | 91.19\n",
+ "Sensible heat flux (W/m²) from soil source: 98.71 | 98.71\n",
+ "Ground heat flux (W/m²): 48.10 | 48.10\n"
]
}
],
@@ -753,7 +760,7 @@
},
{
"cell_type": "code",
- "execution_count": 77,
+ "execution_count": 8,
"id": "7f1d2a0f",
"metadata": {},
"outputs": [],
@@ -775,7 +782,7 @@
},
{
"cell_type": "code",
- "execution_count": 79,
+ "execution_count": 9,
"id": "0f3cbd16",
"metadata": {},
"outputs": [],
@@ -797,7 +804,7 @@
},
{
"cell_type": "code",
- "execution_count": 81,
+ "execution_count": 10,
"id": "1a06d81d",
"metadata": {},
"outputs": [
@@ -806,15 +813,15 @@
"output_type": "stream",
"text": [
"Energy balance components np_outputs ee_outputs\n",
- "Net radiation (W/m²): [524.5 104.5] | [524.5 104.5]\n",
- "Net radiation (W/m²) from canopy source: [366.7 73.1] | [366.7 73.1]\n",
- "Net radiation (W/m²) from soil source: [157.8 31.4] | [157.8 31.4]\n",
- "Latent heat flux (W/m²): [405.5 88.5] | [405.5 88.5]\n",
- "Latent heat flux (W/m²) from canopy source: [320.1 63.3] | [320.1 63.3]\n",
- "Latent heat flux (W/m²) from soil source: [85.4 25.2] | [85.4 25.2]\n",
- "Sensible heat flux (W/m²) from canopy source: [46.7 9.8] | [46.7 9.8]\n",
- "Sensible heat flux (W/m²) from soil source: [28.5 -2.5] | [28.5 -2.5]\n",
- "Ground heat flux (W/m²): [43.9 8.7] | [43.9 8.7]\n"
+ "Net radiation (W/m²): [574.5 104.5] | [574.5 104.5]\n",
+ "Net radiation (W/m²) from canopy source: [401.7 73.1] | [401.7 73.1]\n",
+ "Net radiation (W/m²) from soil source: [172.8 31.4] | [172.8 31.4]\n",
+ "Latent heat flux (W/m²): [336.5 77.9] | [336.5 77.9]\n",
+ "Latent heat flux (W/m²) from canopy source: [310.5 56. ] | [310.5 56. ]\n",
+ "Latent heat flux (W/m²) from soil source: [26. 21.8] | [26. 21.8]\n",
+ "Sensible heat flux (W/m²) from canopy source: [91.2 17. ] | [91.2 17. ]\n",
+ "Sensible heat flux (W/m²) from soil source: [98.7 0.9] | [98.7 0.9]\n",
+ "Ground heat flux (W/m²): [48.1 8.7] | [48.1 8.7]\n"
]
}
],
@@ -869,7 +876,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.13"
+ "version": "3.12.2"
}
},
"nbformat": 4,
diff --git a/examples/notebooks/02_demo_using_GEE_data.ipynb b/examples/notebooks/02_demo_using_GEE_data.ipynb
index 47e8dc2..b27a694 100644
--- a/examples/notebooks/02_demo_using_GEE_data.ipynb
+++ b/examples/notebooks/02_demo_using_GEE_data.ipynb
@@ -87,7 +87,7 @@
" DT = img.select('dewpoint_temperature') # in Kelvin\n",
" P = img.select('surface_pressure') # in Pascals\n",
" from geeet.meteo import relative_humidity # eq 7.91 in ECMWF (2016)\n",
- " RH = relative_humidity(T, DT, P) \n",
+ " RH = relative_humidity(T, DT) \n",
" img = img.addBands(Rn).addBands(RH)\n",
" return(img)\n",
"\n",
@@ -321,7 +321,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.13"
+ "version": "3.12.2"
}
},
"nbformat": 4,
diff --git a/examples/notebooks/03_eepredefined_landsat_era5.ipynb b/examples/notebooks/03_eepredefined_landsat_era5.ipynb
index be13ab6..2857d9f 100644
--- a/examples/notebooks/03_eepredefined_landsat_era5.ipynb
+++ b/examples/notebooks/03_eepredefined_landsat_era5.ipynb
@@ -17,7 +17,7 @@
"\n",
"---\n",
"\n",
- "The `geeet.eepredefined` library contains a collection of modules used to make it easy to ingest GEE data into the geeet models. \n",
+ "The `geeet.eepredefined` library contains a collection of modules that make it easy to ingest GEE data into the geeet models. \n",
"\n",
"This notebook demonstrates how to:\n",
"\n",
@@ -226,7 +226,7 @@
"\n",
"Let's generate a small visualization by clipping one of the images to a small region. \n",
"\n",
- "> You will need [geemap](geemap.org) for this visualization. Alternatively, open [this script in the code editor](https://code.earthengine.google.com/628832ffbd371d828a048e9de2f0903d). "
+ "> You will need [geemap](geemap.org) for this visualization. Alternatively, open [this script in the code editor](https://code.earthengine.google.com/f71913e4516d36de0da2c0bce4f03d39). "
]
},
{
@@ -262,7 +262,7 @@
"Map.addLayer(image.select('NDVI'), {'min':0, 'max':1, 'palette':ndvi_pal, 'opacity': 0.8}, 'NDVI')\n",
"Map.addLayer(image.select('radiometric_temperature'), {'min':20+273, 'max':50+273, 'palette':red_pal}, 'Landsat radiometric temperature (K)')\n",
"Map.addLayer(image.select('Rn'), {'min':0, 'max':500, 'palette':red_pal}, 'Net radiation (W/m²)', False)\n",
- "Map.addLayer(image.select('LEc'), {'min':0, 'max':500, 'palette':blue_pal}, 'Latent heat flux (W/m²) from the canopy source', True)\n",
+ "Map.addLayer(image.select('LEc'), {'min':0, 'max':300, 'palette':blue_pal}, 'Latent heat flux (W/m²) from the canopy source', True)\n",
"\n",
"Map"
]
@@ -273,7 +273,7 @@
"source": [
"Here's a preview of how the map should look like:\n",
"\n",
- "![image](https://github.com/kaust-halo/geeet/assets/14804652/30aad357-5ced-4420-b264-7b935c9fd171)"
+ "![image](https://github.com/kaust-halo/geeet/assets/14804652/8379c468-1264-47ff-bdfb-89a7f9d8f61b)"
]
},
{
@@ -308,7 +308,7 @@
" crs=\"EPSG:32637\",\n",
" crsTransform=[30,0,296685,0,-30,3470115],\n",
" )\n",
- "task.start() # Uncomment to submit the task."
+ "#task.start() # Uncomment to submit the task."
]
}
],
@@ -333,7 +333,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.13"
+ "version": "3.12.2"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
diff --git a/examples/notebooks/04_eepredefined_landsat_mapped_collection.ipynb b/examples/notebooks/04_eepredefined_landsat_mapped_collection.ipynb
index bd6e831..05dc0c0 100644
--- a/examples/notebooks/04_eepredefined_landsat_mapped_collection.ipynb
+++ b/examples/notebooks/04_eepredefined_landsat_mapped_collection.ipynb
@@ -98,6 +98,7 @@
" 'cloud_cover',\n",
" 'surface_pressure',\n",
" 'air_temperature',\n",
+ " 'dewpoint_temperature',\n",
" 'u_component_of_wind_10m',\n",
" 'v_component_of_wind_10m',\n",
" 'surface_solar_radiation_downwards_hourly',\n",
@@ -160,7 +161,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.13"
+ "version": "3.12.2"
}
},
"nbformat": 4,
diff --git a/examples/notebooks/05_xarray_landsat_era5.ipynb b/examples/notebooks/05_xarray_landsat_era5.ipynb
index dd7cbbc..dcce5e2 100644
--- a/examples/notebooks/05_xarray_landsat_era5.ipynb
+++ b/examples/notebooks/05_xarray_landsat_era5.ipynb
@@ -54,8 +54,8 @@
"metadata": {},
"outputs": [],
"source": [
- "inputs = data[[\"NDVI\", \"albedo\", \"radiometric_temperature\", \n",
- "\"surface_pressure\", \"air_temperature\", \"wind_speed\", \"solar_radiation\", \"thermal_radiation\"]]\n",
+ "inputs = data[[\"NDVI\", \"albedo\", \"radiometric_temperature\", \n",
+ "\"surface_pressure\", \"air_temperature\", \"dewpoint_temperature\", \"wind_speed\", \"solar_radiation\", \"thermal_radiation\"]]\n",
"inputs"
]
},
@@ -178,8 +178,8 @@
"inputsb = (datab[[\n",
" \"longitude\", \"latitude\",\n",
" \"NDVI\", \"albedo\", \"radiometric_temperature\", \n",
- " \"surface_pressure\", \"air_temperature\", \"wind_speed\", \n",
- " \"solar_radiation\", \"thermal_radiation\"]]\n",
+ " \"surface_pressure\", \"air_temperature\", \"dewpoint_temperature\",\n",
+ " \"wind_speed\", \"solar_radiation\", \"thermal_radiation\"]]\n",
")\n",
"\n",
"xetb = geeet.tseb.tseb_series(inputsb, **dict(\n",
@@ -219,7 +219,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.13"
+ "version": "3.12.2"
}
},
"nbformat": 4,
diff --git a/geeet/ptjpl.py b/geeet/ptjpl.py
index 8ae533d..c3e62be 100644
--- a/geeet/ptjpl.py
+++ b/geeet/ptjpl.py
@@ -123,6 +123,7 @@ def ptjpl_arid(img=None, # ee.Image with inputs as bands (takes precedence over
band_names = img.bandNames()
NDVI = img.select('NDVI')
Ta = img.select('air_temperature')
+ Td = img.select('dewpoint_temperature')
P = img.select('surface_pressure')
F_aparmax = img.select('fapar_max')
time = img.get('time')
@@ -154,7 +155,7 @@ def ptjpl_arid(img=None, # ee.Image with inputs as bands (takes precedence over
ft = compute_ft_arid(Ta)
f_apar = compute_fapar(NDVI)
fm = compute_fm(f_apar, F_aparmax)
- met_params = compute_met_params(Ta, P)
+ met_params = compute_met_params(Ta, Td, P)
fsm = compute_fsm(RH, Ta, Beta)
if is_img(img):
diff --git a/geeet/resistances.py b/geeet/resistances.py
index 84d0593..00ea617 100644
--- a/geeet/resistances.py
+++ b/geeet/resistances.py
@@ -7,7 +7,7 @@
def RN95(U, CH, rough_params, LAI, leaf_width, zU, zT, L=None, Ustar = None, rough_bands = ['ZM','ZH','D0'] , band_names = ['Ra', 'Rs', 'Rx']):
"""
Calculate the original TSEB resistances from Norman et al., 1995 (N95)
-#//description
+
Inputs:
- U: wind speed in m/s, numpy array or an ee.Image
- CH: canopy height in m, numpy array or ee.Image
@@ -98,7 +98,6 @@ def RN95(U, CH, rough_params, LAI, leaf_width, zU, zT, L=None, Ustar = None, rou
where C1 ~ 90 s-1/2 m-1
s is the average leaf width
Udzm is given by equation A.9 and is obtained after computing Uc (Equations B2-B4)
-#//enddescription
"""
from geeet.MOST import PsiM as compute_psim
from geeet.MOST import PsiH as compute_psih