Skip to content

Latest commit

 

History

History
76 lines (54 loc) · 1.84 KB

README.md

File metadata and controls

76 lines (54 loc) · 1.84 KB

StackGAN

Implementation of "なんちゃって" StackGAN model using Keras.

Discription

"なんちゃって" is a phrase that means that it is not genuine.

Requirements

  • Python 3.0 or newer
  • Keras 2.0 or newer (Tensorflow backend)
  • Pillow
  • numpy
  • tqdm
  • h5py

Getting started

  1. Clone this repository:
git clone https://github.com/kcct-fujimotolab/StackGAN.git
cd StackGAN/
  1. Make a directory for data sets:
mkdir images
  1. Collect images (more than 2000-3000 works better):
ls images/
data0000.jpg   data0001.jpg   ...   data9999.jpg
  1. Start training by specifying image size, number of epochs, data set directory, etc.:
python train.py --input images/ --size 128 128 --epoch 5000

Options

--help -h: show information

train.py

--input -i: data sets path (default -i images/)
--size -z: image size during training, 2 values required, must be multiples of 8 (default -z 128 128)
--epoch -e: number of epochs (default -e 3000)
--batch -b: batch size (default -b 64)
--dim -d: input dimension of generator (default -d 100)
--output -o: output directory path (default -o gen/)
--save -s: taking snapshot interval (default -s 100)

Results

We extracted 4096 images from the face data provided by Labeled Faces in the Wild, and trained with Keras model.

1000 epochs

1000

2000 epochs

2000

4000 epochs

4000

6000 epochs

6000

Author

Fujimoto Lab at Kobe City College of Technology
Undergraduate Student of Electronics Department
@yoidea