-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathstray_visualize.py
216 lines (189 loc) · 8.58 KB
/
stray_visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import open3d as o3d
import numpy as np
from scipy.spatial.transform import Rotation
from argparse import ArgumentParser
from PIL import Image
import skvideo.io
description = """
This script visualizes datasets collected using the Stray Scanner app.
"""
usage = """
Basic usage: python stray_visualize.py <path-to-dataset-folder>
"""
DEPTH_WIDTH = 256
DEPTH_HEIGHT = 192
MAX_DEPTH = 20.0
def read_args():
parser = ArgumentParser(description=description, usage=usage)
parser.add_argument('path', type=str, help="Path to StrayScanner dataset to process.")
parser.add_argument('--trajectory', '-t', action='store_true', help="Visualize the trajectory of the camera as a line.")
parser.add_argument('--frames', '-f', action='store_true', help="Visualize camera coordinate frames from the odometry file.")
parser.add_argument('--point-clouds', '-p', action='store_true', help="Show concatenated point clouds.")
parser.add_argument('--integrate', '-i', action='store_true', help="Integrate point clouds using the Open3D RGB-D integration pipeline, and visualize it.")
parser.add_argument('--mesh-filename', type=str, help='Mesh generated from point cloud integration will be stored in this file. open3d.io.write_triangle_mesh will be used.', default=None)
parser.add_argument('--every', type=int, default=60, help="Show only every nth point cloud and coordinate frames. Only used for point cloud and odometry visualization.")
parser.add_argument('--voxel-size', type=float, default=0.015, help="Voxel size in meters to use in RGB-D integration.")
parser.add_argument('--confidence', '-c', type=int, default=1,
help="Keep only depth estimates with confidence equal or higher to the given value. There are three different levels: 0, 1 and 2. Higher is more confident.")
return parser.parse_args()
def _resize_camera_matrix(camera_matrix, scale_x, scale_y):
fx = camera_matrix[0, 0]
fy = camera_matrix[1, 1]
cx = camera_matrix[0, 2]
cy = camera_matrix[1, 2]
return np.array([[fx * scale_x, 0.0, cx * scale_x],
[0., fy * scale_y, cy * scale_y],
[0., 0., 1.0]])
def read_data(flags):
intrinsics = np.loadtxt(os.path.join(flags.path, 'camera_matrix.csv'), delimiter=',')
odometry = np.loadtxt(os.path.join(flags.path, 'odometry.csv'), delimiter=',', skiprows=1)
poses = []
for line in odometry:
# timestamp, frame, x, y, z, qx, qy, qz, qw
position = line[2:5]
quaternion = line[5:]
T_WC = np.eye(4)
T_WC[:3, :3] = Rotation.from_quat(quaternion).as_matrix()
T_WC[:3, 3] = position
poses.append(T_WC)
depth_dir = os.path.join(flags.path, 'depth')
depth_frames = [os.path.join(depth_dir, p) for p in sorted(os.listdir(depth_dir))]
depth_frames = [f for f in depth_frames if '.npy' in f or '.png' in f]
return { 'poses': poses, 'intrinsics': intrinsics, 'depth_frames': depth_frames }
def load_depth(path, confidence=None, filter_level=0):
if path[-4:] == '.npy':
depth_mm = np.load(path)
elif path[-4:] == '.png':
depth_mm = np.array(Image.open(path))
depth_m = depth_mm.astype(np.float32) / 1000.0
if confidence is not None:
depth_m[confidence < filter_level] = 0.0
return o3d.geometry.Image(depth_m)
def load_confidence(path):
return np.array(Image.open(path))
def get_intrinsics(intrinsics):
"""
Scales the intrinsics matrix to be of the appropriate scale for the depth maps.
"""
intrinsics_scaled = _resize_camera_matrix(intrinsics, DEPTH_WIDTH / 1920, DEPTH_HEIGHT / 1440)
return o3d.camera.PinholeCameraIntrinsic(width=DEPTH_WIDTH, height=DEPTH_HEIGHT, fx=intrinsics_scaled[0, 0],
fy=intrinsics_scaled[1, 1], cx=intrinsics_scaled[0, 2], cy=intrinsics_scaled[1, 2])
def trajectory(flags, data):
"""
Returns a set of lines connecting each camera poses world frame position.
returns: [open3d.geometry.LineSet]
"""
line_sets = []
previous_pose = None
for i, T_WC in enumerate(data['poses']):
if previous_pose is not None:
points = o3d.utility.Vector3dVector([previous_pose[:3, 3], T_WC[:3, 3]])
lines = o3d.utility.Vector2iVector([[0, 1]])
line = o3d.geometry.LineSet(points=points, lines=lines)
line_sets.append(line)
previous_pose = T_WC
return line_sets
def show_frames(flags, data):
"""
Returns a list of meshes of coordinate axes that have been transformed to represent the camera matrix
at each --every:th frame.
flags: Command line arguments
data: dict with keys ['poses', 'intrinsics']
returns: [open3d.geometry.TriangleMesh]
"""
frames = [o3d.geometry.TriangleMesh.create_coordinate_frame().scale(0.25, np.zeros(3))]
for i, T_WC in enumerate(data['poses']):
if not i % flags.every == 0:
continue
print(f"Frame {i}", end="\r")
mesh = o3d.geometry.TriangleMesh.create_coordinate_frame().scale(0.1, np.zeros(3))
frames.append(mesh.transform(T_WC))
return frames
def point_clouds(flags, data):
"""
Converts depth maps to point clouds and merges them all into one global point cloud.
flags: command line arguments
data: dict with keys ['intrinsics', 'poses']
returns: [open3d.geometry.PointCloud]
"""
pcs = []
intrinsics = get_intrinsics(data['intrinsics'])
pc = o3d.geometry.PointCloud()
meshes = []
rgb_path = os.path.join(flags.path, 'rgb.mp4')
video = skvideo.io.vreader(rgb_path)
for i, (T_WC, rgb) in enumerate(zip(data['poses'], video)):
if i % flags.every != 0:
continue
print(f"Point cloud {i}", end="\r")
T_CW = np.linalg.inv(T_WC)
confidence = load_confidence(os.path.join(flags.path, 'confidence', f'{i:06}.png'))
depth_path = data['depth_frames'][i]
depth = load_depth(depth_path, confidence, filter_level=flags.confidence)
rgb = Image.fromarray(rgb)
rgb = rgb.resize((DEPTH_WIDTH, DEPTH_HEIGHT))
rgb = np.array(rgb)
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(
o3d.geometry.Image(rgb), depth,
depth_scale=1.0, depth_trunc=MAX_DEPTH, convert_rgb_to_intensity=False)
pc += o3d.geometry.PointCloud.create_from_rgbd_image(rgbd, intrinsics, extrinsic=T_CW)
return [pc]
def integrate(flags, data):
"""
Integrates collected RGB-D maps using the Open3D integration pipeline.
flags: command line arguments
data: dict with keys ['intrinsics', 'poses']
Returns: open3d.geometry.TriangleMesh
"""
volume = o3d.pipelines.integration.ScalableTSDFVolume(
voxel_length=flags.voxel_size,
sdf_trunc=0.05,
color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8)
intrinsics = get_intrinsics(data['intrinsics'])
rgb_path = os.path.join(flags.path, 'rgb.mp4')
video = skvideo.io.vreader(rgb_path)
for i, (T_WC, rgb) in enumerate(zip(data['poses'], video)):
print(f"Integrating frame {i:06}", end='\r')
depth_path = data['depth_frames'][i]
depth = load_depth(depth_path)
rgb = Image.fromarray(rgb)
rgb = rgb.resize((DEPTH_WIDTH, DEPTH_HEIGHT))
rgb = np.array(rgb)
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(
o3d.geometry.Image(rgb), depth,
depth_scale=1.0, depth_trunc=MAX_DEPTH, convert_rgb_to_intensity=False)
volume.integrate(rgbd, intrinsics, np.linalg.inv(T_WC))
mesh = volume.extract_triangle_mesh()
mesh.compute_vertex_normals()
return mesh
def validate(flags):
if not os.path.exists(os.path.join(flags.path, 'rgb.mp4')):
absolute_path = os.path.abspath(flags.path)
print(f"The directory {absolute_path} does not appear to be a directory created by the Stray Scanner app.")
return False
return True
def main():
flags = read_args()
if not validate(flags):
return
if not flags.frames and not flags.point_clouds and not flags.integrate:
flags.frames = True
flags.point_clouds = True
flags.trajectory = True
data = read_data(flags)
geometries = []
if flags.trajectory:
geometries += trajectory(flags, data)
if flags.frames:
geometries += show_frames(flags, data)
if flags.point_clouds:
geometries += point_clouds(flags, data)
if flags.integrate:
mesh = integrate(flags, data)
if flags.mesh_filename is not None:
o3d.io.write_triangle_mesh(flags.mesh_filename, mesh)
geometries += [mesh]
o3d.visualization.draw_geometries(geometries)
if __name__ == "__main__":
main()