This repository has been archived by the owner on Dec 14, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmicrobiome-profiling.Rmd
502 lines (365 loc) · 12 KB
/
microbiome-profiling.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
---
title: "Microbial community profiling for human microbiome projects: \n Tools, techniques, and challenges"
subtitle: "Hamady & Knight, Genome Res. 2009"
author: "Presented by Kelly Sovacool"
date: "23 Sept. 2019"
output:
xaringan::moon_reader:
# nature:
# ratio: '16:9'
lib_dir: libs/
chakra: libs/remark-latest.min.js
css: libs/remark-css-0.0.1/default.css
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, eval = TRUE)
```
```{r render, eval=FALSE}
library(xaringan)
rmarkdown::render("microbiome-profiling.Rmd")
```
## Acknowledgements
Reviewers:
- Wenjin Gu
- Kevin Tracy
Instructors:
- Dr. Armand Bankhead
- Dr. Josh Welch
---
## Outline
- Background
- Techniques in microbial community profiling
- Discussion
- My Conclusions
---
### Background
**Microbiome**: The collection of microbes that live in an environment.
.center[
```{r, out.width= '90%'}
knitr::include_graphics("figures/Microbiome_spheres_2016_EMBL.jpg")
```
]
.footnote[
[[EMBL-EBI: What's a microbiome?](https://www.ebi.ac.uk/about/news/feature-story/whats-a-microbiome)]
]
---
### Background: Why care?
.center[
Changes in the composition of the human microbiome are associated with health and disease.
```{r, out.width= '85%'}
knitr::include_graphics("figures/human_microbiome.gif")
```
]
.footnote[
[[The Human Microbiome Project, Nature 2012](https://dx.doi.org/10.1038%2Fnature11234)] [[theconversation.com/the-human-microbiome](http://theconversation.com/the-human-microbiome-is-a-treasure-trove-waiting-to-be-unlocked-118757)]
]
---
### Background
- **Microbial community profiling**: Characterize which microbes are present and how abundant they are.
---
### Background
- **Microbial community profiling**: Characterize which microbes are present and how abundant they are.
- Application: detecting colorectal cancer (CRC)
- Colonoscopy is invasive, but the best way to detect CRC.
- Profiled microbiota from fecal samples of cancer patients and healthy individuals.
- Classified individuals as healthy vs cancer based on microbial DNA, compared to colonoscopy results as ground truth.
- Microbial community profiling improved classifications over other less-invasive methods.
.center[
👤👤👤 ➡️ 💩💩💩 ➡️ 🦠🦠🦠 ️➡️ 🧬🧬🧬 ➡️ 💻 ➡️ 📊
]
.footnote[
[Baxter et al., Genome Med. 2016](https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0290-3)
]
---
### Background: Phylogeny & Taxonomy
.center[
**Phylogeny**: building evolutionary trees.
```{r, out.width='100%'}
knitr::include_graphics("figures/tree_khan.png")
```
]
.footnote[
[[khanacademy.org: evolutionary trees](https://www.khanacademy.org/science/biology/her/tree-of-life/a/building-an-evolutionary-tree)]
]
---
### Background: Phylogeny & Taxonomy
.center[
**Taxonomy**: classifying organisms, informed by phylogeny.
```{r, out.width="80%"}
knitr::include_graphics("figures/tree_twitter.png")
```
]
.footnote[
[[twitter.com/biolojical](https://twitter.com/biolojical/status/1142920063999025152)]
]
---
### Background: Phylogeny & Taxonomy
Challenges for classifying prokaryotes:
- Asexual reproduction
- Fast evolutionary change
- Horizontal gene transfer
.center[
```{r, out.width="80%"}
knitr::include_graphics("figures/nature_hgt.png")
```
]
.footnote[
[[Smets & Barkay, Nature Reviews 2005](https://doi.org/10.1038/nrmicro1253)]
]
---
### Background: Operational Taxonomic Unit (OTU)
- Proxy for microbial species (or any desired taxonomic level).
- Created by clustering sequences based on sequence similarity.
- Avoids difficulties of classifying bacteria into species, especially when unknown organisms are present.
```{r, out.width='100%'}
knitr::include_graphics("figures/OTU_clustering.png")
```
---
### Background: Key Questions Raised
- Is there a core set of microbial species or genes that all humans share?
- How do changes in microbial abundances at particular taxonomic levels relate to health & disease?
---
## Outline
- Background
- **Techniques in microbial community profiling**
- Overall Workflow
- Sequencing
- Clustering
- Comparing Communities
- Discussion
- My Conclusions
---
## Techniques: Overall Workflow
.center[
```{r, out.width='100%'}
knitr::include_graphics("figures/F2.large.jpg")
```
]
**Fig. 2**
.footnote[
[[Hamady & Knight, Genome Res. 2009](https://doi.org/10.1101/gr.085464.108)]
]
---
### Techniques: Sequencing
#### Metagenomics _vs._ 16S rRNA
| | Metagenomics | 16s rRNA |
|------|--------------|----------|
| **Technique** | Whole-genome shotgun sequencing | Only sequence part of the 16S rRNA gene |
| **Purpose** | Measures functional potential of the whole microbiome | Sufficient to estimate which microbes are present and their abundances |
| **Organisms** | Bacteria, archaea, viruses, fungi | Bacteria & archaea only |
| **Requirements** | Need long reads to cover genes | Short reads are sufficient |
| **Cost** | 💲💲💲 | 💲 |
---
### Techniques: Sequencing 16S rRNA gene regions
.center[
```{r, out.width='80%'}
knitr::include_graphics("figures/F4.A.jpg")
```
]
**Fig. 4 A**: V2 and V4 yield similar results to the full-length gene. V6 is not recommended due to the many unclassified sequences.
.footnote[
[[Hamady & Knight, Genome Res. 2009](https://doi.org/10.1101/gr.085464.108)]
]
---
### Techniques: Clustering OTUs
.pull-left[
```{r, out.width='60%'}
knitr::include_graphics("figures/multi-omics_16S-rRNA.jpg")
```
]
- Cluster similar 16S sequences into Operational Taxonomic Units (OTUs).
- Compare abundances of OTUs within and across samples.
.footnote[
[[Bikel et al., Comput. Struct. Biotech. 2015](10.1016/j.csbj.2015.06.001)]
]
---
### Techniques: Clustering OTUs
1. Calculate all pairwise sequence identity scores to create a distance matrix.
2. Apply cutoff of 97% sequence identity to create an adjacency matrix.
.center[
```
seqA AGGGTACG
seqB ACG-TACG
```
$$ \%\ sequence\ identity = 100 * \frac{number\ of\ matches}{sequence\ length} $$
]
.pull-left[
1) Distance matrix:
| | Seq1 | Seq2 | Seq3 |
|-|------|------|------|
| Seq1 | - | 98 | 87 |
| Seq2 | 98 | - | 76 |
| Seq3 | 87 | 76 | - |
]
.pull-right[
2) Adjacency matrix:
| | Seq1 | Seq2 | Seq3 |
|-|------|------|------|
| Seq1 | - | 1 | 0 |
| Seq2 | 1 | - | 0 |
| Seq3 | 0 | 0 | - |
]
---
### Techniques: OTU clustering algorithms
.center[
```{r, out.width='100%'}
knitr::include_graphics("figures/F5.E-F.jpg")
```
]
**Fig. 5 E & F**
- Nearest-neighbor: greedily add a sequence if it is similar to *any* sequence in the OTU
- Furthest-neighbor: only add a sequence if it is similar to *all* other sequences in the OTU
- Average neighbor: compromise between the two.
.footnote[
[[Hamady & Knight, Genome Res. 2009](https://doi.org/10.1101/gr.085464.108)]
[[Westcott & Schloss, PeerJ 2015](https://peerj.com/articles/1487/)]
]
---
### Techniques: Comparing communities
- Alpha diversity: how many OTUs are in a sample
- Beta diversity: how are OTUs shared among samples
- Community membership: presence/absence of OTUs
- Community structure: relative abundance of OTUs
---
### Techniques: Comparing communities
Phylum-level: relative abundance
.center[
```{r, out.width='80%'}
knitr::include_graphics("figures/F3.A.jpg")
```
]
**Fig. 3**: 22 human gut samples show quite different abundances.
.footnote[
[[Hamady & Knight, Genome Res. 2009](https://doi.org/10.1101/gr.085464.108)]
]
---
### Techniques: Comparing communities
OTU-level: presence/absence of OTUs
.center[
```{r, out.width='60%'}
knitr::include_graphics("figures/F3.B.jpg")
```
]
**Fig. 3**: 1813 of 2320 OTUs were present in only one sample.
.footnote[
[[Hamady & Knight, Genome Res. 2009](https://doi.org/10.1101/gr.085464.108)]
]
---
### Techniques: Comparing communities
#### Phylogenetic- vs Taxon-based analysis
.pull-left[
Taxon-based: assume all OTUs are equally related.
]
.pull-right[
Phylogenetic: attempt to build a tree from OTUs.
]
```{r}
knitr::include_graphics("figures/Phylogeny_Star_vs_Hierarchical.jpg")
```
.footnote[
[image: [commons.wikimedia.org](https://commons.wikimedia.org/wiki/File:Phylogeny_Star_vs_Hierarchical.jpg)]
[Unifrac: [mothur.org/wiki/Unweighted_UniFrac_algorithm](https://mothur.org/wiki/Unweighted_UniFrac_algorithm)]
]
---
### Techniques: Comparing communities
Phylogenetic- vs Taxon-based analysis
.center[
```{r}
knitr::include_graphics("figures/F4.B.jpg")
```
]
**Fig. 4B**: PCoA on full-length 16S samples. All methods give equivalent results, clustering the samples by individual.
- Unifrac (phylogenetic): distance between a pair of communities as the proportion of evolution that is unique to one community or the other.
- Euclidean & Kulcynski are taxon-based distance metrics.
.footnote[
[[Hamady & Knight, Genome Res. 2009](https://doi.org/10.1101/gr.085464.108)] [[sequentix.de/distance_measures](https://www.sequentix.de/gelquest/help/distance_measures.htm)]
]
---
### Techniques: Comparing communities
Phylogenetic methods outperform taxon-based when sequence depth is low.
```{r}
knitr::include_graphics("figures/F4.E.jpg")
```
**Fig. 4E**: Effect of different clustering measures on (yellow) vertebrate gut and (red) free-living samples.
.pull-right[
Jaccard index: $$ \frac{|A \cap B|}{|A \cup B|} $$
]
.footnote[
[[Hamady & Knight, Genome Res. 2009](https://doi.org/10.1101/gr.085464.108)]
[[sequentix.de/distance_measures](https://www.sequentix.de/gelquest/help/distance_measures.htm)]
]
---
## Outline
- Background
- Techniques in microbial community profiling
- Overall Workflow
- Sequencing
- Clustering
- Comparing Communities
- **Discussion**
- My Conclusions
---
## Discussion: Key Questions Addressed
- Is there a core set of microbial species or genes that all humans share?
- Microbiomes between individuals vary greatly by which species are present and their abundances.
- No species are shared at high abundance.
- How do changes in microbial abundances at particular taxonomic levels relate to health & disease?
- Focus on gene sets, rather than taxon levels, to compare functional potential of microbiomes.
---
## Outline
- Background
- Techniques in microbial community profiling
- Overall Workflow
- Sequencing
- Clustering
- Comparing Communities
- Discussion
- **Conclusion**
---
## Conclusion
- Summarizes the techniques, best practices, and questions to consider in microbial community analysis at the time (2009).
- Although many of the tools and technologies have changed, the concepts presented here are still relevant today.
---
### Limitations
- Lacked substantial discussion of the strenghs & weakenesses of different clustering algorithms.
- Many other algorithms besides nearest & furthest neighbor.
- How does the quality of OTU assignments produced by different algorithms compare?
- Did not discuss limitations of phylogenetic-based comparison of communities with Unifrac.
- Unifrac only tests whether communities have the _same_ structure; does not indicate a level of similarity.
- Taxon-based methods do quantify a level of similarity.
- Mentions some of the tools used (e.g. Unifrac, DOTUR), but there are many gaps for a full analysis pipeline.
.footnote[
[[mothur.org/wiki/Unifrac.weighted](https://www.mothur.org/wiki/Unifrac.weighted)]
]
---
### Advancements since 2009
- Illumina MiSeq / HiSeq instead of 454 Pyrosequencing.
- mothur & QIIME: comprehensive tools for microbial community profiling.
- optiClust: OTU clustering algorithm in mothur.
.pull-left[
```{r, out.width='80%'}
knitr::include_graphics("figures/mothur_RGB.png")
```
]
.pull-right[
```{r}
knitr::include_graphics("figures/qiime_logo_large.png")
```
]
.footnote[
[[mothur.org/wiki](https://mothur.org/wiki)] [[riffomonas.org/minimalR](http://www.riffomonas.org/minimalR/)]
[[qiime2.org/](https://qiime2.org/)]
]
---
### Towards integrated omics
.center[
```{r, out.width='100%'}
knitr::include_graphics("figures/multi-omics.jpg")
```
]
.footnote[
[[Bikel et al., Comput. Struct. Biotech. 2015](10.1016/j.csbj.2015.06.001)]
]
---
### These slides are available on GitHub:
https://github.com/kelly-sovacool/bioinf603-fall2019