forked from haotian-liu/LLaVA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_orpo_lora.py
192 lines (168 loc) · 8.04 KB
/
finetune_orpo_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import argparse
import os
import torch
import torch.nn.functional as F
from peft import LoraConfig, get_peft_model
from transformers import Trainer, TrainingArguments
from datasets import load_from_disk
from llava.model.builder import load_pretrained_model
from PIL import Image
# ✅ Define collate function
def collate_fn(batch, tokenizer, image_processor, device, dtype, max_length):
input_ids, attention_masks, labels, images = [], [], [], []
for example in batch:
# Tokenize question and response
tokenized_prompt = tokenizer(
example["question"],
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt"
)
tokenized_response = tokenizer(
example["chosen"],
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt"
)
input_ids.append(tokenized_prompt["input_ids"].squeeze(0).to(dtype=torch.long))
attention_masks.append(tokenized_prompt["attention_mask"].squeeze(0))
labels.append(tokenized_response["input_ids"].squeeze(0).to(dtype=torch.long))
# Process image
image = example["image"].convert("RGB")
image_tensor = image_processor(images=image, return_tensors="pt")["pixel_values"].squeeze(0)
images.append(image_tensor.to(dtype=dtype))
return {
"input_ids": torch.stack(input_ids),
"attention_mask": torch.stack(attention_masks).to(dtype=dtype),
"labels": torch.stack(labels),
"images": torch.stack(images),
}
# ✅ Define ORPO loss function
def orpo_loss(preferred_logits, rejected_logits, labels):
labels = labels[:, -1].contiguous() # Ensure labels is 1D
loss_pref = F.cross_entropy(preferred_logits, labels)
loss_rej = F.cross_entropy(rejected_logits, labels)
return loss_pref - 0.5 * loss_rej # Lambda = 0.5
# ✅ Custom Trainer with ORPO Loss
class ORPOTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
inputs = {k: v.to(self.args.device) for k, v in inputs.items()}
inputs["input_ids"] = inputs["input_ids"].to(dtype=torch.long)
inputs["labels"] = inputs["labels"].to(dtype=torch.long)
dtype = torch.bfloat16 if self.args.bf16 else torch.float32
for key in ["attention_mask", "images"]:
inputs[key] = inputs[key].to(dtype=dtype)
outputs = model(**inputs)
logits = outputs.logits
preferred_logits = logits[:, 0, :]
rejected_logits = logits[:, 1, :]
loss = orpo_loss(preferred_logits, rejected_logits, inputs["labels"])
return (loss, outputs) if return_outputs else loss
def main(args):
# ✅ Step 1: Ensure dataset paths exist
if not os.path.exists(args.train_data_path) or not os.path.exists(args.val_data_path):
raise FileNotFoundError(f"❌ Dataset paths not found! Ensure {args.train_data_path} and {args.val_data_path} exist.")
# ✅ Step 2: Load datasets from disk
print("🔹 Loading train & validation datasets from disk...")
train_dataset = load_from_disk(args.train_data_path)
val_dataset = load_from_disk(args.val_data_path)
print(f"✅ Train Dataset Size: {len(train_dataset)} | Validation Dataset Size: {len(val_dataset)}\n")
# ✅ Step 3: Load Model
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=args.model_name,
model_base=None,
model_name="llava-v1.6-mistral-7b",
load_8bit=False,
load_4bit=False
)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# ✅ Step 4: Configure LoRA
target_modules = args.lora_target_modules.split(",")
lora_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias=args.lora_bias,
target_modules=target_modules,
task_type=args.lora_task_type
)
# Apply LoRA and freeze non-LoRA (and non-lm_head) parameters.
model = get_peft_model(model, lora_config)
model.print_trainable_parameters() # Debug print.
for name, param in model.named_parameters():
if "lora" in name or "lm_head" in name:
param.requires_grad = True
else:
param.requires_grad = False
print(f"✅ Trainable Parameters Count: {sum(p.requires_grad for p in model.parameters())}\n")
# ✅ Step 5: Training Arguments
training_args = TrainingArguments(
output_dir=args.output_dir,
per_device_train_batch_size=args.per_device_train_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
max_steps=args.max_steps,
logging_steps=args.logging_steps,
report_to=args.report_to,
save_strategy=args.save_strategy,
save_steps=args.save_steps,
save_total_limit=args.save_total_limit,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
warmup_ratio=args.warmup_ratio,
lr_scheduler_type=args.lr_scheduler_type,
gradient_checkpointing=args.gradient_checkpointing,
remove_unused_columns=args.remove_unused_columns,
bf16=args.bf16
)
# ✅ Convert model precision if bf16 is enabled.
if args.bf16:
model.to(torch.bfloat16)
else:
model.to(torch.float32)
# ✅ Initialize Trainer
trainer = ORPOTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=lambda batch: collate_fn(batch, tokenizer, image_processor, device, torch.bfloat16 if args.bf16 else torch.float32, args.max_length)
)
# ✅ Start Training
trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tune LLAVA with LoRA and ORPO")
# ✅ Dataset arguments (NEW: Load dataset paths from disk)
parser.add_argument("--train_data_path", type=str, default="../rlaif-v-train-only", help="Path to train dataset")
parser.add_argument("--val_data_path", type=str, default="../rlaif-v-validation-only", help="Path to validation dataset")
# ✅ Model arguments
parser.add_argument("--model_name", type=str, default="../../llava-v1.6-mistral-7b", help="Path to model")
# ✅ LoRA configuration
parser.add_argument("--lora_r", type=int, default=16)
parser.add_argument("--lora_alpha", type=int, default=32)
parser.add_argument("--lora_dropout", type=float, default=0.1)
parser.add_argument("--lora_bias", type=str, default="none", help="LoRA bias setting")
parser.add_argument("--lora_target_modules", type=str, default="q_proj,v_proj,k_proj,o_proj,down_proj,up_proj,gate_proj")
parser.add_argument("--lora_task_type", type=str, default="CAUSAL_LM")
# ✅ Training hyperparameters
parser.add_argument("--output_dir", type=str, default="./llava-output")
parser.add_argument("--per_device_train_batch_size", type=int, default=32)
parser.add_argument("--gradient_accumulation_steps", type=int, default=32)
parser.add_argument("--max_steps", type=int, default=500)
parser.add_argument("--logging_steps", type=int, default=10)
parser.add_argument("--report_to", type=str, default="wandb")
parser.add_argument("--save_strategy", type=str, default="steps")
parser.add_argument("--save_steps", type=int, default=100)
parser.add_argument("--save_total_limit", type=int, default=20)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--warmup_ratio", type=float, default=0.03)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--gradient_checkpointing", action="store_true", default=True)
parser.add_argument("--remove_unused_columns", action="store_true", default=False)
parser.add_argument("--bf16", action="store_true", default=False)
parser.add_argument("--max_length", type=int, default=2048)
args = parser.parse_args()
main(args)