forked from haotian-liu/LLaVA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_orpo_RLAIF_HH-RLHF.py
250 lines (212 loc) · 10.1 KB
/
train_orpo_RLAIF_HH-RLHF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import argparse
import os
import torch
import torch.nn.functional as F
from peft import LoraConfig, get_peft_model
from transformers import Trainer, TrainingArguments, BitsAndBytesConfig
from datasets import load_from_disk, concatenate_datasets
from llava.model.builder import load_pretrained_model
from PIL import Image
# ✅ Define collate function
def collate_fn(batch, tokenizer, image_processor, device, dtype, max_length):
input_ids, attention_masks, labels, images = [], [], [], []
for example in batch:
chosen = example.get("chosen")
rejected = example.get("rejected")
question = example.get("question") # Might be missing in HH-RLHF
# ✅ Handling RLAIF-V dataset (Image + Text)
if question is not None:
question = question.strip()
chosen_response = chosen.strip() if chosen else ""
rejected_response = rejected.strip() if rejected else ""
# ✅ Handling HH-RLHF dataset (Text-Only)
elif chosen and rejected:
if "Human:" in chosen and "Assistant:" in chosen:
question = chosen.split("Assistant:")[0].strip()
chosen_response = chosen.split("Assistant:")[-1].strip()
rejected_response = rejected.split("Assistant:")[-1].strip()
else:
print(f"⚠️ Warning: Unable to extract question from HH-RLHF! Skipping Example: {example}")
continue # Skip malformed HH-RLHF samples
else:
print(f"⚠️ Warning: Missing required fields! Skipping Example: {example}")
continue # Skip invalid samples
# ✅ Tokenize question & responses
tokenized_prompt = tokenizer(
text=question,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt"
)
tokenized_chosen = tokenizer(
text=chosen_response,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt"
)
tokenized_rejected = tokenizer(
text=rejected_response,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt"
)
input_ids.append(tokenized_prompt["input_ids"].squeeze(0).to(dtype=torch.long))
attention_masks.append(tokenized_prompt["attention_mask"].squeeze(0))
labels.append(tokenized_chosen["input_ids"].squeeze(0).to(dtype=torch.long))
# ✅ Handle Image Processing for RLAIF-V
if question is not None and example.get("image") is not None:
image = example["image"].convert("RGB")
image_tensor = image_processor(images=image, return_tensors="pt")["pixel_values"].squeeze(0)
else:
image_tensor = torch.zeros((3, 336, 336)) # Dummy image for HH-RLHF
images.append(image_tensor.to(dtype=dtype))
return {
"input_ids": torch.stack(input_ids),
"attention_mask": torch.stack(attention_masks).to(dtype=dtype),
"labels": torch.stack(labels),
"images": torch.stack(images),
}
# ✅ Define ORPO loss function
def orpo_loss(preferred_logits, rejected_logits, labels):
labels = labels[:, -1].contiguous()
loss_pref = F.cross_entropy(preferred_logits, labels)
loss_rej = F.cross_entropy(rejected_logits, labels)
return loss_pref - 0.5 * loss_rej
# ✅ Custom Trainer with ORPO Loss
class ORPOTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
inputs = {k: v.to(self.args.device) for k, v in inputs.items()}
inputs["input_ids"] = inputs["input_ids"].to(dtype=torch.long)
inputs["labels"] = inputs["labels"].to(dtype=torch.long)
dtype = torch.bfloat16 if self.args.bf16 else torch.float32
for key in ["attention_mask", "images"]:
inputs[key] = inputs[key].to(dtype=dtype)
outputs = model(**inputs)
logits = outputs.logits
preferred_logits = logits[:, 0, :]
rejected_logits = logits[:, 1, :]
loss = orpo_loss(preferred_logits, rejected_logits, inputs["labels"])
return (loss, outputs) if return_outputs else loss
def main(args):
# ✅ Load datasets
rlaif_train = load_from_disk(args.rlaif_train_data_path)
hh_rlhf_train = load_from_disk(args.hh_rlhf_data_path)["train"]
val_dataset = load_from_disk(args.val_data_path)
# ✅ Merge datasets
print(f"🔹 Merging datasets: RLAIF-V ({len(rlaif_train)}) + HH-RLHF ({len(hh_rlhf_train)})...")
train_dataset = concatenate_datasets([rlaif_train, hh_rlhf_train])
print(f"✅ Final Training Dataset Size: {len(train_dataset)}\n")
# ✅ Load Model with QLoRA or LoRA
quantization_config = None
if args.use_qlora:
print("🔹 Using QLoRA for fine-tuning...")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16 if args.bf16 else torch.float32
)
gradient_checkpointing = False
else:
gradient_checkpointing = True
print("🔹 Using LoRA for fine-tuning...")
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=args.model_name,
model_base=None,
model_name="llava-v1.6-mistral-7b",
**({"quantization_config": quantization_config} if args.use_qlora else {"load_8bit": False, "load_4bit": False})
)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# ✅ Configure LoRA/QLoRA
if args.use_qlora:
from peft import prepare_model_for_kbit_training
model = prepare_model_for_kbit_training(model)
model.config.use_cache = False
target_modules = args.lora_target_modules.split(",")
lora_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias=args.lora_bias,
target_modules=target_modules,
task_type=args.lora_task_type
)
model = get_peft_model(model, lora_config)
if not args.use_qlora: # ✅ Keep this only for LoRA
for name, param in model.named_parameters():
if "lora" in name or "lm_head" in name:
param.requires_grad = True
else:
param.requires_grad = False
model.print_trainable_parameters()
print("✅ LoRA/QLoRA configuration complete. Model is ready for training.")
print(f" Current gradient_checkpointing : {gradient_checkpointing}")
# ✅ Training Arguments
training_args = TrainingArguments(
output_dir=args.output_dir,
per_device_train_batch_size=args.per_device_train_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
max_steps=args.max_steps,
logging_steps=args.logging_steps,
report_to=args.report_to,
save_strategy=args.save_strategy,
save_steps=args.save_steps,
save_total_limit=args.save_total_limit,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
warmup_ratio=args.warmup_ratio,
lr_scheduler_type=args.lr_scheduler_type,
gradient_checkpointing=(not args.use_qlora),
remove_unused_columns=args.remove_unused_columns,
bf16=args.bf16
)
if args.bf16:
model.to(torch.bfloat16)
else:
model.to(torch.float32)
trainer = ORPOTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=lambda batch: collate_fn(batch, tokenizer, image_processor, device, torch.bfloat16 if args.bf16 else torch.float32, args.max_length)
)
trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tune LLAVA with LoRA or QLoRA and ORPO")
# ✅ Dataset and Model paths
parser.add_argument("--rlaif_train_data_path", type=str, default="../rlaif-v-train-only")
parser.add_argument("--hh_rlhf_data_path", type=str, default="../hh-rlhf-only")
parser.add_argument("--val_data_path", type=str, default="../rlaif-v-validation-only")
parser.add_argument("--model_name", type=str, default="../../llava-v1.6-mistral-7b")
# ✅ LoRA/QLoRA configuration
parser.add_argument("--use_qlora", action="store_true", help="Enable QLoRA instead of LoRA")
parser.add_argument("--lora_r", type=int, default=16)
parser.add_argument("--lora_alpha", type=int, default=32)
parser.add_argument("--lora_dropout", type=float, default=0.1)
parser.add_argument("--lora_bias", type=str, default="none")
parser.add_argument("--lora_target_modules", type=str, default="q_proj,v_proj,k_proj,o_proj,down_proj,up_proj,gate_proj")
parser.add_argument("--lora_task_type", type=str, default="CAUSAL_LM")
# ✅ Training hyperparameters
parser.add_argument("--output_dir", type=str, default="./llava-output")
parser.add_argument("--per_device_train_batch_size", type=int, default=256)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--max_steps", type=int, default=625)
parser.add_argument("--logging_steps", type=int, default=5)
parser.add_argument("--report_to", type=str, default="wandb")
parser.add_argument("--save_strategy", type=str, default="steps")
parser.add_argument("--save_steps", type=int, default=100)
parser.add_argument("--save_total_limit", type=int, default=20)
parser.add_argument("--learning_rate", type=float, default=4e-5)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--warmup_ratio", type=float, default=0.03)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--gradient_checkpointing", action="store_true", default=True)
parser.add_argument("--remove_unused_columns", action="store_true", default=False)
parser.add_argument("--bf16", action="store_true", default=False)
parser.add_argument("--max_length", type=int, default=2048)
args = parser.parse_args()
main(args)