-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpred.py
148 lines (122 loc) · 5.53 KB
/
pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import functools
import os
from os.path import join
import random
import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
from dataset.helpers import collate_fn
from dataset.dataset import MultimerDataset
from model.alphafold_finetune_multimer import AlphaFold_Multimer
import util
from model.openfold.feats import atom14_to_atom37
from dataset.openfold_util import residue_constants
from dataset.af2_util import protein_alt
import json
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def get_dataset(args):
return MultimerDataset(args)
def val(args, model, val_dataloader):
model.eval()
confidence_list = {}
for step, (batch, targets) in enumerate(val_dataloader):
single_test = batch['test']['single']
pair_test = batch['test']['pair']
aatype_test = batch['test']['aatype']
protein_test = batch['test']['protein']
protein_test.update({'chain_idx': torch.tensor(batch['test']['chain_idx'])})
protein_test_device = protein_test.copy()
if args.cuda:
single_test = single_test.cuda(args.device_id)
pair_test = pair_test.cuda(args.device_id)
aatype_test = aatype_test.cuda(args.device_id)
for key in protein_test_device.keys():
protein_test_device[key] = protein_test_device[key].cuda(args.device_id)
protein_test_device.update({'target': targets})
with torch.no_grad():
postition_full, confidence, docking_score = model(pair_test, single_test, aatype_test, None, None, None, protein_test=protein_test_device, training=False)
confidence = confidence.cpu().numpy()
plddt_b_factors = np.repeat(
confidence[..., None], residue_constants.atom_type_num, axis=-1
)
final_pos = atom14_to_atom37(postition_full[-1].cpu(), protein_test)
final_atom_mask = protein_test["atom37_atom_exists"]
dist_per_residue = np.zeros_like(final_atom_mask.squeeze(0))
prot_test = protein_alt.Protein(
aatype=aatype_test.squeeze(0).cpu().numpy(),
atom_positions=final_pos.squeeze(0).cpu().numpy(),
atom_mask=final_atom_mask.squeeze(0).cpu().numpy(),
residue_index=protein_test['residue_index'].squeeze(0).numpy(),
b_factors=plddt_b_factors[0],
chain_index=batch['test']['chain_idx']
)
pdb_lines = protein_alt.to_pdb(prot_test)
#print(targets)
output_dir_pred = os.path.join(args.output_dir, f"{targets}_pred_all_full.pdb")
with open(output_dir_pred, 'w') as f:
f.write(pdb_lines)
#confidence_list.update({targets: docking_score.item()})
# ranked_order = [m for m, _ in sorted(confidence_list.items(), key=lambda x: x[1], reverse=True)]
# ranking_output_path = os.path.join(args.output_dir , 'ranking_debug.json')
# with open(ranking_output_path, 'w') as f:
# label = 'iptm+ptm'
# f.write(json.dumps(
# {label: confidence_list, 'order': ranked_order}, indent=4))
return "done"
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--targets", default="/train_chains", type=str,
help="File of targets for training")
parser.add_argument("--output_dir",default="test_run",type=str,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--model_dir",default="",type=str,
help="model directory if load model from checkpoints")
parser.add_argument("--embedding_dir",default="",type=str,
help="The directory where pre-generated msa embeddings are stored.")
parser.add_argument("--device_id", type=int, default=0, help="cude device id")
parser.add_argument("--seed", type=int, default=999, help="random seed for initialization")
parser.add_argument("--ipa_depth", type=int, default=8, help="depth of ipd block")
parser.add_argument("--point_scale", type=int, default=1, help="point scale for translations")
parser.add_argument("--contact", default=False, action="store_true", help='whether to contact prediction is in the model')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.device_id)
args.device_id = 0
# Set CUDA
args.cuda = True if torch.cuda.is_available() else False
args.n_gpu = 1 #Only use 1 gpu for now
#Print and save args
util.print_options(args)
# Set seed
set_seed(args)
# Get datasets
val_dataset = get_dataset(args)
collate = functools.partial(collate_fn, args=args)
val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=True, num_workers=3, collate_fn=collate)
#Get model
model = AlphaFold_Multimer(args)
if args.model_dir:
model.load_state_dict(
torch.load(f'{args.model_dir}/model_state_dict.pt', map_location='cpu')
)
#model.cuda(args.device_id)
print(f'Checkpoints (model) loaded from {args.model_dir}')
if args.cuda:
model.cuda(args.device_id)
total_params = 0
for name, parameter in model.named_parameters():
if not parameter.requires_grad: continue
param = parameter.numel()
#print(f'layer {name}: {param}')
total_params+=param
print('trainable parameters: ', total_params)
# Training
print(val(args, model, val_dataloader))
if __name__ == "__main__":
main()