-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
78 lines (58 loc) · 2.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/python3
import sys
import importlib.util
from scripts.dataset import *
from scripts.engine import *
from scripts.lossFn import *
from scripts.model import *
from scripts.utils import *
from sklearn.model_selection import train_test_split
import torchvision.transform as T
import torch
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model", nargs='?', type=str, const="model.pth", help="The Name of Model Saving")
parser.add_argument("--batch-size", nargs='?', type=int, const=16, help="Batch Size for Train Data")
parser.add_argument("--batch-size-val", nargs="?", type=int, const=16, help="Batch Size for Validation/Testing Data")
parser.add_argument("--epochs", type=int, action="store", help="Number of Epochs for Training")
parser.add_argument("--lr", type=float, action="store", help="Number of Learning Rate for RMSprop optimizers")
args = parser.parse_args()
TRAIN_BS = 16
VAL_BS = 16
EPOCHS = 100
def main():
rootDir = ''
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Training running on {device} Device")
spec = importlib.util.spec_from_file_location('labels', "data/devkit/helpers/labels.py")
labels = importlib.util.module_from_spec(spec)
sys.modules['labels'] = labels
spec.loader.exec_module(labels)
encoder, decoder = mapping_colors(labels)
trainTransform = T.Compose([
T.Resize((375, 1241)),
T.ColorJitter(brightness=0.6, contrast=0.8, saturation=0.2),
T.ToTensor()])
valTransform = T.Compose([
T.Resize((375, 1241)),
T.ToTensor()
])
images = list(sorted(os.listdir(os.path.join("data/training", 'image_2'))))
masks = list(sorted(os.listdir(os.path.join("data/training", 'semantic_rgb'))))
train_images, val_images, train_masks, val_masks = train_test_split(images, masks, test_size=0.3, random_state=42)
train_dataset = KittiDataset(rootDir, images=train_images, masks=train_masks, mapping=encoder, transform=trainTransform, resize_mask=(366, 1234))
val_dataset = KittiDataset(rootDir, images=val_images, masks=val_masks, mapping=encoder, transform=valTransform, resize_mask=(366, 1234))
trainLoader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
valLoader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size_val, shuffle=False)
model = DeepLabV3Plus(3, 35, 32, (375, 1241))
optimizer = torch.optim.RMSprop(model.parameters(), lr=args.lr)
engine = Engine(model, optimizer, criterion=getLoss, epochs=args.epochs, device=device)
engine.fit(trainLoader, valLoader)
payload = {'state_dict': engine.model.state_dict(),
'optimizer': optimizer.state_dict(),
'encoder':encoder,
'decoder':decoder}
torch.save(payload, args.model)
print('Training Successfully!!!')
if __name__ == "__main__":
main()