-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
168 lines (133 loc) · 5.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
from PIL import Image
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def save_images(args, e1, e2, decoder, iters):
test_domain_a, test_domain_b = get_test_images(args)
exps = []
for i in range(args.num_display):
with torch.no_grad():
if i == 0:
filler = test_domain_b[i].unsqueeze(0).clone()
exps.append(filler.fill_(0))
exps.append(test_domain_b[i].unsqueeze(0))
for i in range(args.num_display):
exps.append(test_domain_a[i].unsqueeze(0))
separate_a = e2(test_domain_a[i].unsqueeze(0))
for j in range(args.num_display):
with torch.no_grad():
common_b = e1(test_domain_b[j].unsqueeze(0))
ba_encoding = torch.cat([common_b, separate_a], dim=1)
ba_decoding = decoder(ba_encoding)
exps.append(ba_decoding)
with torch.no_grad():
exps = torch.cat(exps, 0)
vutils.save_image(exps,
'%s/experiments_%06d.png' % (args.out, iters),
normalize=True, nrow=args.num_display + 1)
def interpolate(args, e1, e2, decoder):
test_domain_a, test_domain_b = get_test_images(args)
exps = []
_inter_size = 5
with torch.no_grad():
for i in range(5):
b_img = test_domain_b[i].unsqueeze(0)
common_b = e1(b_img)
for j in range(args.num_display):
with torch.no_grad():
exps.append(test_domain_a[j].unsqueeze(0))
separate_a_1 = e2(test_domain_a[j].unsqueeze(0))
separate_a_2 = e2(test_domain_a[j].unsqueeze(0))
for k in range(_inter_size + 1):
cur_sep = float(j) / _inter_size * separate_a_2 + (1 - (float(k) / _inter_size)) * separate_a_1
a_encoding = torch.cat([common_b, cur_sep], dim=1)
a_decoding = decoder(a_encoding)
exps.append(a_decoding)
exps.append(test_domain_a[i].unsqueeze(0))
exps = torch.cat(exps, 0)
vutils.save_image(exps,
'%s/interpolation.png' % args.save,
normalize=True, nrow=_inter_size + 3)
def get_test_images(args):
comp_transform = transforms.Compose([
transforms.CenterCrop(args.crop),
transforms.Resize(args.resize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
domain_a_test = CustomDataset(os.path.join(args.root, 'testA.txt'), transform=comp_transform)
domain_b_test = CustomDataset(os.path.join(args.root, 'testB.txt'), transform=comp_transform)
domain_a_test_loader = torch.utils.data.DataLoader(domain_a_test, batch_size=64,
shuffle=False, num_workers=args.n_threads)
domain_b_test_loader = torch.utils.data.DataLoader(domain_b_test, batch_size=64,
shuffle=False, num_workers=args.n_threads)
for domain_a_img in domain_a_test_loader:
domain_a_img = Variable(domain_a_img)
if torch.cuda.is_available():
domain_a_img = domain_a_img.cuda()
domain_a_img = domain_a_img.view((-1, 3, args.resize, args.resize))
domain_a_img = domain_a_img[:]
break
for domain_b_img in domain_b_test_loader:
domain_b_img = Variable(domain_b_img)
if torch.cuda.is_available():
domain_b_img = domain_b_img.cuda()
domain_b_img = domain_b_img.view((-1, 3, args.resize, args.resize))
domain_b_img = domain_b_img[:]
break
return domain_a_img, domain_b_img
def save_model(out_file, e1, e2, decoder, ae_opt, disc, disc_opt, iters):
state = {
'e1': e1.state_dict(),
'e2': e2.state_dict(),
'decoder': decoder.state_dict(),
'ae_opt': ae_opt.state_dict(),
'disc': disc.state_dict(),
'disc_opt': disc_opt.state_dict(),
'iters': iters
}
torch.save(state, out_file)
def load_model(load_path: str, e1, e2, decoder, ae_opt, disc, disc_opt):
state = torch.load(load_path)
e1.load_state_dict(state['e1'])
e2.load_state_dict(state['e2'])
decoder.load_state_dict(state['decoder'])
ae_opt.load_state_dict(state['ae_opt'])
disc.load_state_dict(state['disc'])
disc_opt.load_state_dict(state['disc_opt'])
return state['iters']
def load_model_for_eval(load_path: str, e1, e2, decoder):
state = torch.load(load_path)
e1.load_state_dict(state['e1'])
e2.load_state_dict(state['e2'])
decoder.load_state_dict(state['decoder'])
return state['iters']
class CustomDataset(data.Dataset):
def __init__(self, path: str, transform=None, return_paths: bool = False):
super(CustomDataset, self).__init__()
with open(path) as f:
images = [s.replace('\n', '') for s in f.readlines()]
self.images = images
self.transform = transform
self.return_paths = return_paths
@staticmethod
def loader(path: str):
return Image.open(path).convert('RGB')
def __getitem__(self, index):
path = self.images[index]
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
if self.return_paths:
return img, path
else:
return img
def __len__(self):
return len(self.images)