-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sorter.py
83 lines (65 loc) · 2.13 KB
/
train_sorter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os, shared, numpy as np, pathlib, tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
shared.fix_crash()
data_dir = pathlib.Path("gems")
image_count = len(list(data_dir.glob('gems/*.png')))
print("Total images:", image_count)
batch_size = 16
img_width = 52
img_height = 52
data_augmentation = tf.keras.Sequential([
layers.experimental.preprocessing.RandomTranslation(0.1, 0.1),
layers.GaussianNoise(0.1)
])
AUTOTUNE = tf.data.AUTOTUNE
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)
with open("classes.txt", 'w') as f:
f.write(','.join(class_names))
train_ds = train_ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
train_ds = train_ds.shuffle(100)
num_classes = len(class_names)
model = Sequential([
layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(8, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.3),
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.3),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.3),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.summary()
if os.path.isfile('gem_classifier.hdf5'):
model.load_weights('gem_classifier.hdf5')
epochs = 100
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
model.save("gem_classifier.hdf5")