-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlines.h
executable file
·912 lines (772 loc) · 24.2 KB
/
streamlines.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/* Copyright (C) 2012 University of Oxford */
/* Part of FSL - FMRIB's Software Library
http://www.fmrib.ox.ac.uk/fsl
fsl@fmrib.ox.ac.uk
Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance
Imaging of the Brain), Department of Clinical Neurology, Oxford
University, Oxford, UK
LICENCE
FMRIB Software Library, Release 5.0 (c) 2012, The University of
Oxford (the "Software")
The Software remains the property of the University of Oxford ("the
University").
The Software is distributed "AS IS" under this Licence solely for
non-commercial use in the hope that it will be useful, but in order
that the University as a charitable foundation protects its assets for
the benefit of its educational and research purposes, the University
makes clear that no condition is made or to be implied, nor is any
warranty given or to be implied, as to the accuracy of the Software,
or that it will be suitable for any particular purpose or for use
under any specific conditions. Furthermore, the University disclaims
all responsibility for the use which is made of the Software. It
further disclaims any liability for the outcomes arising from using
the Software.
The Licensee agrees to indemnify the University and hold the
University harmless from and against any and all claims, damages and
liabilities asserted by third parties (including claims for
negligence) which arise directly or indirectly from the use of the
Software or the sale of any products based on the Software.
No part of the Software may be reproduced, modified, transmitted or
transferred in any form or by any means, electronic or mechanical,
without the express permission of the University. The permission of
the University is not required if the said reproduction, modification,
transmission or transference is done without financial return, the
conditions of this Licence are imposed upon the receiver of the
product, and all original and amended source code is included in any
transmitted product. You may be held legally responsible for any
copyright infringement that is caused or encouraged by your failure to
abide by these terms and conditions.
You are not permitted under this Licence to use this Software
commercially. Use for which any financial return is received shall be
defined as commercial use, and includes (1) integration of all or part
of the source code or the Software into a product for sale or license
by or on behalf of Licensee to third parties or (2) use of the
Software or any derivative of it for research with the final aim of
developing software products for sale or license to a third party or
(3) use of the Software or any derivative of it for research with the
final aim of developing non-software products for sale or license to a
third party, or (4) use of the Software to provide any service to an
external organisation for which payment is received. If you are
interested in using the Software commercially, please contact Oxford
University Innovation ("OUI"), the technology transfer company of the
University, to negotiate a licence. Contact details are:
Innovation@innovation.ox.ac.uk quoting reference DE/9564. */
#include <fstream>
#ifndef EXPOSE_TREACHEROUS
#define EXPOSE_TREACHEROUS
#endif
#include "newimage/newimageall.h"
#include "utils/log.h"
#include "meshclass/meshclass.h"
#include "probtrackxOptions.h"
#include "particle.h"
#include "tractvolsx.h"
#include "miscmaths/SpMat.h"
#include "csv.h"
#include "utils/tracer_plus.h"
#include "seed_utils.h"
#include <math.h>
#include <cmath>
using namespace std;
using namespace NEWIMAGE;
using namespace Utilities;
using namespace TRACTVOLSX;
using namespace mesh;
using namespace PARTICLE;
using namespace seed_utilities;
struct infoVertex { // to avoid connections between vertices of the same triangle
float value;
int mesh;
int triangle;
};
struct infoVertexSeed { // to avoid connections between vertices of the same triangle ... for seeds
int loc;
int mesh;
vector<int> triangles;
};
class MatCell_cmpr {
// This class contains compressed information on entries for matrix4 format
public:
MatCell_cmpr() :
code2(0) {
}
MatCell_cmpr(double val) :
code2(0) {
}
MatCell_cmpr(const MatCell_cmpr& rhs) {
*this = rhs;
}
void add_one(float dist, int fib);
void add_n(float dist, vector<float> props, int n);
void add_n(int64_t newcode2);
int64_t getcode2() const {
return code2;
}
MatCell_cmpr& operator=(const MatCell_cmpr& rhs) {
code2 = rhs.code2;
return *this;
}
MatCell_cmpr& operator+=(const MatCell_cmpr& rhs) {
add_n(rhs.code2);
return *this;
}
void Print() {
int nsamples, fibcnt1, fibcnt2;
float length_tot;
decode(code2, nsamples, fibcnt1, fibcnt2, length_tot);
cout << "code2 = " << code2 << endl;
cout << "nsamples = " << nsamples << endl;
cout << "fibcnt1 = " << fibcnt1 << endl;
cout << "fibcnt2 = " << fibcnt2 << endl;
cout << "fibcnt3 = " << nsamples - fibcnt1 - fibcnt2 << endl;
cout << "length_tot = " << length_tot << endl;
cout << "avg_length = "
<< (nsamples != 0 ? length_tot / (float) nsamples : 0.0)
<< endl;
cout << "----------------------" << endl;
}
private:
int64_t code2; //Compressed info on fibre_count, fibre1_prop, fibre1_prop, avg_length: code2 = two32*fibre_count + mult*mult*fibre_prop1 + mult*fibre_prop2 + length_val
void decode(int64_t incode, int& nsamples, int& fibcnt1, int& fibcnt2,
float& length_tot) const;
void encode(const int nsamples, const int fibcnt1, const int fibcnt2,
const float length_tot);
};
inline MatCell_cmpr operator*(const double& x, const MatCell_cmpr& rhs) {
return rhs;
}
class SpMatHCPException: public std::exception {
private:
std::string m_msg;
public:
SpMatHCPException(const std::string& msg) throw () :
m_msg(msg) {
}
virtual const char * what() const throw () {
return string("SpMat_HCP::" + m_msg).c_str();
}
~SpMatHCPException() throw () {
}
};
class SpMat_HCP: public SpMat<MatCell_cmpr> {
public:
SpMat_HCP() :
SpMat<MatCell_cmpr>::SpMat() {
}
SpMat_HCP(unsigned int m, unsigned int n) :
SpMat<MatCell_cmpr>::SpMat(m, n) {
}
SpMat_HCP(unsigned int m, unsigned int n, const string& basename);
~SpMat_HCP() {
}
int SaveTrajFile(const string& basename) const;
void AddToTraj(unsigned int r, unsigned int c, float dist, int fib) {
here(r, c).add_one(dist, fib);
}
void AddToTraj(unsigned int r, unsigned int c, float dist,
vector<float> props, int n) {
here(r, c).add_n(dist, props, n);
}
void AddToTraj(unsigned int r, unsigned int c, int64_t Newcode2) {
here(r, c).add_n(Newcode2);
}
void Print() {
for (unsigned int c = 0; c < Ncols(); c++) {
const std::vector<unsigned int>& ri = get_ri(c);
for (unsigned int r = 0; r < ri.size(); r++) {
cout << "Element " << ri[r] + 1 << "," << c + 1 << endl;
Peek(ri[r] + 1, c + 1).Print();
}
}
}
void Print(int r, int c) {
Peek(r, c).Print();
}
};
namespace TRACT {
void read_ascii_files(const string& filename, vector<string>& content);
// the following is a helper function for save_matrix*
// to convert between nifti coords (external) and newimage coord (internal)
void applycoordchange(volume<int>& coordvol, const Matrix& old2new_mat);
void applycoordchange(Matrix& coordvol, const Matrix& old2new_mat);
class Streamliner {
//Everything in DTI space is done INSIDE this class and lower level classes (particle and tractvolsx)
//This class communicates with higher level classes in Seed voxels.
//
probtrackxOptions& opts;
Log& logger;
Particle m_part;
vector<ColumnVector> m_path;
vector<ColumnVector> m_diff_path;
int m_tracksign;
volume<float> m_mask;
// prior masks
volume<int> m_skipmask;
CSV m_rubbish;
CSV m_stop;
CSV m_waymasks;
CSV m_netmasks;
CSV m_wtstopmasks;
vector<int> m_way_passed_flags;
// for network mode
int m_seed_id;
Matrix m_network_mat;
ColumnVector m_net_passed_flags;
ColumnVector m_net_passed;
vector<vector<ColumnVector> > m_crossedvox;
bool m_surfexists;
string m_waycond;
volume4D<float> m_prefdir;
volume4D<float> m_loopcheck;
volume<float> m_loccurvthresh;
// transform seed<->diff space
Matrix m_Seeds_to_DTI;
Matrix m_DTI_to_Seeds;
volume4D<float> m_Seeds_to_DTI_warp;
volume4D<float> m_DTI_to_Seeds_warp;
bool m_IsNonlinXfm;
// rotdir stuff
Matrix m_rotdir;
volume4D<float> m_jacx, m_jacy, m_jacz;
Tractvolsx vols;
float m_lcrat;
float m_x_s_init;
float m_y_s_init;
float m_z_s_init;
/*
* KE
*/
// Members for initial tracking direction
float m_idir_th;
float m_idir_ph;
// Members for comparing first first sampled direction
// to surface normal
ColumnVector normal_sphere;
SeedUtilities normal_checker;
/*
* End KE
*/
// Streamliner needs to know about matrix3
CSV m_mask3;
CSV m_lrmask3;
vector<pair<int, infoVertex> > m_inmask3; // knows which node in mask3 and how far from seed (signed distance)
vector<pair<int, infoVertex> > m_inlrmask3;
vector<pair<int, infoVertex> > m_inmask3_aux; // write here and update m_inmask3 only if a part is accepted
vector<pair<int, infoVertex> > m_inlrmask3_aux;
// we need this class to know about seed space
const CSV& m_seeds;
public:
//Constructors
Streamliner(const CSV& seeds);
~Streamliner() {
}
const CSV& get_seeds() const {
return m_seeds;
}
const Tractvolsx& get_vols() const {
return vols;
}
inline int nfibres() const {
return vols.get_nfibres();
}
inline const float get_x_seed() const {
return m_x_s_init;
}
inline const float get_y_seed() const {
return m_y_s_init;
}
inline const float get_z_seed() const {
return m_z_s_init;
}
const vector<ColumnVector>& get_path_ref() const {
return m_path;
}
vector<ColumnVector> get_path() const {
return m_path;
}
const vector<ColumnVector>& get_diff_path_ref() const {
return m_diff_path;
}
vector<ColumnVector> get_diff_path() const {
return m_diff_path;
}
vector<vector<ColumnVector> > get_crossedvox() const {
return m_crossedvox;
}
const vector<vector<ColumnVector> >& get_crossedvox_ref() const {
return m_crossedvox;
}
void surfexists() {
m_surfexists = true;
}
/*
* KE
*/
// Return Particle object
Particle get_part() {
return m_part;
}
// Set initial spherical angle tracking direction
void set_angles(ColumnVector spheres) {
m_idir_th = spheres(1);
m_idir_ph = spheres(2);
}
// Set seed vertex normal vector
void set_normal(ColumnVector normal) {
normal_sphere = normal;
}
/*
* Check that sampled theta, phi, f point in correct direction.
*
* Computes the spherical distance (Great Circle Distance)
* between the sampled direction and the seed vertex normal
* direction. If distance greater than pi / 2, flips the
* sampled direction.
*/
ColumnVector check_sample_sign(ColumnVector sampled) {
ColumnVector spheres(2);
spheres << sampled(1) << sampled(2);
float gc = normal_checker.spherical_distance(normal_sphere, spheres);
float pi = atan(1)*4.0;
if (gc > pi/2) {
ColumnVector prop2cart = (-1)*normal_checker.sphere2cart(sampled);
spheres = normal_checker.cart2sphere(prop2cart);
sampled << spheres(1) << spheres(2) << sampled(3);
};
return sampled;
}
// Get initial tracking direction Spherical coordinates
Matrix get_angles() {
Matrix angles(1,2);
angles(1, 1) = m_idir_th;
angles(1, 2) = m_idir_ph;
return angles;
}
/*
* End KE
*/
inline void reset() {
m_part.reset();
vols.reset(opts.fibst.value());
for (unsigned int i = 0; i < m_way_passed_flags.size(); i++)
m_way_passed_flags[i] = 0;
if (opts.network.value()) {
m_net_passed_flags = 0;
m_net_passed = 0;
}
m_tracksign = 1;
}
inline void reverse() {
m_part.restart_reverse();
m_tracksign = -1;
}
void rotdir(const ColumnVector& dir, ColumnVector& rotdir, const float& x,
const float& y, const float& z);
int streamline(const float& x_init, const float& y_init,
const float& z_init, const ColumnVector& dim_seeds,
const int& fibst);
// separate masks loading from class constructor
void load_netmasks(const string& filename, const int& excl) {
vector<int> vexcl;
vexcl.push_back(excl);
load_netmasks(filename, vexcl);
}
void load_netmasks(const string& filename, const vector<int>& exclude) {
string tmpfilename = logger.appendDir("tmpnetmaskfile");
ofstream of(tmpfilename.c_str());
vector<string> filelist;
read_ascii_files(filename, filelist);
int nfiles = 0;
for (unsigned int i = 0; i < filelist.size(); i++) {
bool iselmnt = false;
for (unsigned int j = 0; j < exclude.size(); j++) {
if (i == (unsigned int) exclude[j]) {
iselmnt = true;
break;
}
}
if (!iselmnt) {
nfiles++;
of << filelist[i] << endl;
}
}
m_netmasks.reinitialize(m_seeds.get_refvol());
m_netmasks.set_convention(opts.meshspace.value());
m_netmasks.load_rois(tmpfilename);
if (m_netmasks.nSurfs() > 0) {
surfexists();
}
m_net_passed_flags.ReSize(m_netmasks.nRois());
m_net_passed_flags = 0;
m_net_passed.ReSize(m_netmasks.nRois());
m_net_passed = 0;
}
void set_seed_id(const int i) {
m_seed_id = i;
}
void init_network_mat(const int n) {
m_network_mat.ReSize(n, n);
m_network_mat = 0;
}
void update_mat() {
for (int i = 1; i <= m_net_passed.Nrows(); i++) {
if (m_net_passed(i) == 0) {
continue;
}
if (m_seed_id + 1 > i) {
m_network_mat(m_seed_id + 1, i)++;}
else {
m_network_mat(m_seed_id + 1, i + 1)++;}
}
}
void save_network_mat() {
write_ascii_matrix(m_network_mat,
logger.appendDir("fdt_network_matrix"));
}
void load_waymasks(const string& filename) {
m_waymasks.reinitialize(m_seeds.get_refvol());
m_waymasks.set_convention(opts.meshspace.value());
m_waymasks.load_rois(filename);
if (m_waymasks.nSurfs() > 0) {
surfexists();
}
m_way_passed_flags.clear();
for (int i = 0; i < m_waymasks.nRois(); i++)
m_way_passed_flags.push_back(0);
}
void load_wtstopmasks(const string& filename) {
m_wtstopmasks.reinitialize(m_seeds.get_refvol());
m_wtstopmasks.set_convention(opts.meshspace.value());
m_wtstopmasks.load_rois(filename);
if (m_wtstopmasks.nSurfs() > 0) {
surfexists();
} //cerr<<"Surface has been provided as a walk-through stopping mask! Currently unsupported!"; exit(1); }
}
void set_waycond(const string& cond) {
m_waycond = cond;
}
string get_wacond() const {
return m_waycond;
}
void load_stop(const string& filename) {
m_stop.reinitialize(m_seeds.get_refvol());
m_stop.set_convention(opts.meshspace.value());
m_stop.load_rois(filename);
if (m_stop.nSurfs() > 0) {
surfexists();
}
}
void load_rubbish(const string& filename) {
m_rubbish.reinitialize(m_seeds.get_refvol());
m_rubbish.set_convention(opts.meshspace.value());
m_rubbish.load_rois(filename);
if (m_rubbish.nSurfs() > 0) {
surfexists();
}
}
// ////// matrix3 methods
void init_mask3() {
m_mask3.reinitialize(m_seeds.get_refvol());
m_mask3.set_convention(opts.meshspace.value());
m_mask3.load_rois(opts.mask3.value());
if (m_mask3.nSurfs() > 0) {
surfexists();
}
if (opts.lrmask3.value() != "") {
m_lrmask3.reinitialize(m_seeds.get_refvol());
m_lrmask3.set_convention(opts.meshspace.value());
m_lrmask3.load_rois(opts.lrmask3.value());
if (m_lrmask3.nSurfs() > 0) {
surfexists();
}
}
}
void clear_inmask3() {
m_inmask3.clear();
m_inmask3_aux.clear();
}
void clear_inlrmask3() {
m_inlrmask3.clear();
m_inlrmask3_aux.clear();
}
void reset_m_inmask3_aux() {
m_inmask3_aux.clear();
m_inlrmask3_aux.clear();
}
vector<pair<int, infoVertex> >& get_inmask3() {
return m_inmask3;
}
vector<pair<int, infoVertex> >& get_inlrmask3() {
return m_inlrmask3;
}
CSV get_mask3() {
return m_mask3;
}
CSV get_lrmask3() {
return m_lrmask3;
}
void fill_inmask3(const vector<int>& crossedlocs3,
vector<pair<int, int> >& surf_Triangle, const float& pathlength) {
vector<pair<int, infoVertex> > inmask3;
for (unsigned int iter = 0; iter < crossedlocs3.size(); iter++) {
pair<int, infoVertex> mypair;
mypair.first = crossedlocs3[iter];
mypair.second.value = m_tracksign * pathlength;
mypair.second.mesh = surf_Triangle[iter].first;
mypair.second.triangle = surf_Triangle[iter].second;
inmask3.push_back(mypair);
}
m_inmask3_aux.insert(m_inmask3_aux.end(), inmask3.begin(),
inmask3.end());
}
void fill_inlrmask3(const vector<int>& crossedlocs3,
vector<pair<int, int> >& surf_Triangle, const float& pathlength) {
vector<pair<int, infoVertex> > inmask3;
for (unsigned int iter = 0; iter < crossedlocs3.size(); iter++) {
pair<int, infoVertex> mypair;
mypair.first = crossedlocs3[iter];
mypair.second.value = m_tracksign * pathlength;
mypair.second.mesh = surf_Triangle[iter].first;
mypair.second.triangle = surf_Triangle[iter].second;
inmask3.push_back(mypair);
}
m_inlrmask3_aux.insert(m_inlrmask3_aux.end(), inmask3.begin(),
inmask3.end());
}
void copy_inmask3() {
m_inmask3.insert(m_inmask3.end(), m_inmask3_aux.begin(),
m_inmask3_aux.end());
m_inlrmask3.insert(m_inlrmask3.end(), m_inlrmask3_aux.begin(),
m_inlrmask3_aux.end());
}
// /////////////////////////////////////////////////////////////////
};
class Counter {
probtrackxOptions& opts;
Log& logger;
volume<float> m_prob; // spatial histogram of tract location within brain mask (in seed space)
volume<float> m_prob2; // for mean path length
volume4D<float> m_localdir;
volume<int> m_beenhere;
Matrix m_I;
vector<ColumnVector> m_path;
vector<ColumnVector> m_diff_path;
vector<vector<ColumnVector> > m_crossedvox;
CSV m_prob_alt; // spatial histogram of tracts with alternative user-defined mask
CSV m_prob_alt2; // for mean path length
CSV m_beenhere_alt;
// same as m_prob and m_localdir but split into the different
// target masks if the option opts.targetpaths is ON
vector<volume<float> > m_prob_multi;
vector<volume<float> > m_prob_multi2; // for mean path length
vector<volume4D<float> > m_localdir_multi;
// temp
volume<float> m_lastpoint; // store last point in trajectory
vector<vector<ColumnVector> > m_save_paths;
// do we still need these?
vector<ColumnVector> m_seedcounts;
Matrix m_SeedCountMat;
int m_numseeds;
// know where we are in seed space/counts (because seeds are now CSV)
string m_curtype;
infoVertexSeed m_curloc;
// classification targets
CSV m_targetmasks;
vector<bool> m_targflags;
CSV m_s2t_count;
CSV m_s2t_count2; // for mean path length
Matrix m_s2tastext;
Matrix m_s2tastext2; // for mean path length
int m_s2trow;
volume4D<float> m_targetpaths;
// MATRIX 1
SpMat<float> *m_ConMat1; // using sparse
SpMat<float> *m_ConMat1b; // for mean path length
vector<ColumnVector> m_ConMat1c; // store each path [start end length]
int m_Conrow1;
// MATRIX 2
SpMat<float> *m_ConMat2; // using sparse
SpMat<float> *m_ConMat2b; // for mean path length
volume<int> m_lrmask;
volume<int> m_lookup2;
volume<int> m_beenhere2;
ColumnVector m_lrdim;
// MATRIX 3
SpMat<float> *m_ConMat3; // using sparse
SpMat<float> *m_ConMat3b; // for mean path length
vector<ColumnVector> m_ConMat3c; // store each path [start end length]
// MATRIX 4 - columns are seed space, rows are diffusion space
SpMat_HCP *m_ConMat4;
volume<int> m_dtimask;
CSV m_mask4;
volume<int> m_lookup4;
volume<int> m_beenhere4;
ColumnVector m_dtidim;
// misc
ColumnVector m_seedsdim;
Streamliner& m_stline;
public:
Counter(Streamliner& stline) :
opts(probtrackxOptions::getInstance()), logger(
LogSingleton::getInstance()), m_stline(stline) {
m_numseeds = m_stline.get_seeds().nLocs();
m_beenhere.reinitialize(m_stline.get_seeds().xsize(),
m_stline.get_seeds().ysize(), m_stline.get_seeds().zsize());
m_beenhere = 0;
m_seedsdim.ReSize(3);
m_seedsdim << m_stline.get_seeds().xdim() << m_stline.get_seeds().ydim()
<< m_stline.get_seeds().zdim();
m_I = IdentityMatrix(4);
}
~Counter() {
}
Streamliner& get_stline() {
return m_stline;
}
void initialise();
void initialise_path_dist() {
if (opts.verbose.value() > 0)
cout << "Initialise pathdist" << endl;
m_prob.reinitialize(m_stline.get_seeds().xsize(),
m_stline.get_seeds().ysize(), m_stline.get_seeds().zsize());
copybasicproperties(m_stline.get_seeds().get_refvol(), m_prob);
m_prob = 0;
if (opts.omeanpathlength.value()) {
m_prob2.reinitialize(m_stline.get_seeds().xsize(),
m_stline.get_seeds().ysize(), m_stline.get_seeds().zsize());
copybasicproperties(m_stline.get_seeds().get_refvol(), m_prob2);
m_prob2 = 0;
}
if (opts.opathdir.value()) {
m_localdir.reinitialize(m_stline.get_seeds().xsize(),
m_stline.get_seeds().ysize(), m_stline.get_seeds().zsize(),
6);
copybasicproperties(m_stline.get_seeds().get_refvol(), m_localdir);
m_localdir = 0;
}
if (opts.pathfile.set()) {
m_prob_alt.reinitialize(m_stline.get_seeds().get_refvol());
m_prob_alt.set_convention(opts.meshspace.value());
m_prob_alt.load_rois(opts.pathfile.value());
m_prob_alt.reset_values();
if (opts.omeanpathlength.value()) {
m_prob_alt2.reinitialize(m_stline.get_seeds().get_refvol());
m_prob_alt2.set_convention(opts.meshspace.value());
m_prob_alt2.load_rois(opts.pathfile.value());
m_prob_alt2.reset_values();
}
m_beenhere_alt.reinitialize(m_stline.get_seeds().get_refvol());
m_beenhere_alt.set_convention(opts.meshspace.value());
m_beenhere_alt.load_rois(opts.pathfile.value());
m_beenhere_alt.set_vol_values(1);
if (m_prob_alt.nSurfs() > 0) {
m_stline.surfexists();
}
}
if (opts.verbose.value() > 0)
cout << "....done" << endl;
}
void initialise_seedcounts();
void initialise_matrix1();
void initialise_matrix2();
void initialise_matrix3();
void initialise_matrix4();
void forceNumSeeds(const int& n) {
m_numseeds = n;
}
void updateSeedLocation(int loc, int roi, vector<int>& triangles) {
m_curloc.triangles.clear();
m_curloc.loc = loc;
m_curloc.mesh = roi;
for (unsigned int i = 0; i < triangles.size(); i++) {
m_curloc.triangles.push_back(triangles[i]);
}
}
void store_path() {
m_path = m_stline.get_path();
if (opts.matrix4out.value())
m_diff_path = m_stline.get_diff_path();
m_crossedvox = m_stline.get_crossedvox();
}
void append_path() {
for (unsigned int i = 0; i < m_stline.get_path_ref().size(); i++) {
m_path.push_back(m_stline.get_path_ref()[i]);
if (opts.matrix4out.value())
m_diff_path.push_back(m_stline.get_diff_path_ref()[i]);
}
for (unsigned int i = 0; i < m_stline.get_crossedvox_ref().size();
i++) {
m_crossedvox.push_back(m_stline.get_crossedvox_ref()[i]);
}
}
float calc_pathlength(const int& redund = 0) {
return (float(m_path.size() - redund) * opts.steplength.value());
}
void clear_path() {
m_path.clear();
if (opts.matrix4out.value()) {
m_diff_path.clear();
}
m_crossedvox.clear();
}
;
void count_streamline();
void count_seed();
void clear_streamline();
void update_pathdist();
void reset_beenhere();
void update_pathdist_multi();
void reset_prob() {
m_prob = 0;
m_prob2 = 0;
}
void update_seedcounts();
void reset_targetflags() {
for (unsigned int i = 0; i < m_targflags.size(); i++)
m_targflags[i] = false;
}
void update_matrix1(); //update path_dist after each streamline, only run this after each voxel!!
void update_matrix2_row(); //but run this one every streamline as with the others
void reset_beenhere2();
void update_matrix3();
void reset_beenhere3();
void update_matrix4_col();
void reset_beenhere4();
void save_total(const int& keeptotal);
void save_total(const vector<int>& keeptotal);
void save();
void save_pathdist();
void save_pathdist(string add);
void save_seedcounts();
void save_matrix1();
void save_matrix2();
void save_matrix3();
void save_matrix4();
void add_path();
void save_paths();
void save_subpaths();
void save_path_points(vector<ColumnVector> points, int omat_type);
};
class Seedmanager {
probtrackxOptions& opts;
Log& logger;
Counter& m_counter;
ColumnVector m_seeddims;
public:
Seedmanager(Counter& counter) :
opts(probtrackxOptions::getInstance()), logger(
LogSingleton::getInstance()), m_counter(counter) {
m_seeddims.ReSize(3);
m_seeddims << m_counter.get_stline().get_seeds().xdim()
<< m_counter.get_stline().get_seeds().ydim()
<< m_counter.get_stline().get_seeds().zdim();
}
~Seedmanager() {
}
Streamliner& get_stline() {
return m_counter.get_stline();
}
int run(const float& x, const float& y, const float& z, bool onewayonly,
int fibst, float sampvox);
};
}