-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
117 lines (90 loc) · 4.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from __future__ import print_function
import argparse
from math import log10
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from model import Net
from data import get_training_set, get_test_set
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--upscale_factor', type=int, required=True, help="super resolution upscale factor")
parser.add_argument('--batchSize', type=int, default=64, help='training batch size')
parser.add_argument('--testBatchSize', type=int, default=10, help='testing batch size')
parser.add_argument('--nEpochs', type=int, default=2, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.01, help='Learning Rate. Default=0.01')
parser.add_argument('--cuda', action='store_true', help='use cuda?', default=True)
parser.add_argument('--threads', type=int, default=8, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
global opt
opt = parser.parse_args()
print(opt)
if opt.cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
device = torch.device("cuda" if opt.cuda else "cpu")
print('===> Loading datasets')
train_set = get_training_set(opt.upscale_factor)
test_set = get_test_set(opt.upscale_factor)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False)
print('===> Building model')
model = Net(upscale_factor=opt.upscale_factor).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
#load a model from checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(opt.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
def train(epoch):
epoch_loss = 0
for iteration, batch in enumerate(training_data_loader, 1):
input, target = batch[0].to(device), batch[1].to(device)
optimizer.zero_grad()
loss = criterion(model(input), target)
epoch_loss += loss.item()
loss.backward()
optimizer.step()
print("===> Epoch[{}]({}/{}): Loss: {:.4f}".format(epoch, iteration, len(training_data_loader), loss.item()))
print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader)))
def test():
avg_psnr = 0
model.eval()
with torch.no_grad():
for batch in testing_data_loader:
input, target = batch[0].to(device), batch[1].to(device)
prediction = model(input)
mse = criterion(prediction, target)
psnr = 10 * log10(1 / mse.item())
avg_psnr += psnr
print("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader)))
def checkpoint(epoch):
model_out_path = "model_epoch_{}.pth".format(epoch)
torch.save(model, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def save_checkpoint(state):
model_out_path = "model_epoch_{}.pth".format(epoch)
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
for epoch in range(1, opt.nEpochs + 1):
train(epoch)
test()
#checkpoint(epoch)
save_checkpoint({
'epoch': epoch + 1,
'arch': model,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
})