-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathexample_slope.py
164 lines (142 loc) · 7.73 KB
/
example_slope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#==========================================================#
# Estimate beach slopes from CoastSat 2D shorelines
#==========================================================#
# Kilian Vos WRL 2019
#%% 1. Initial settings
import os
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import pytz
import pickle
import SDS_slope
# plotting params
plt.style.use('default')
plt.rcParams['font.size'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
plt.rcParams['axes.titlesize'] = 12
plt.rcParams['axes.labelsize'] = 12
plt.rcParams['legend.fontsize'] = 1
#%% 2. Load 2D shorelines and transects
# load the sitename_output.pkl generated by CoastSat
sitename = 'NARRA'
with open(os.path.join('example_data', sitename + '_output' + '.pkl'), 'rb') as f:
output = pickle.load(f)
# load the 2D transects from geojson file
geojson_file = os.path.join(os.getcwd(), 'example_data', 'NARRA_transects.geojson')
transects = SDS_slope.transects_from_geojson(geojson_file)
# remove S2 shorelines (the slope estimation algorithm works better only with Landsat)
if 'S2' in output['satname']:
idx_S2 = np.array([_ == 'S2' for _ in output['satname']])
for key in output.keys():
output[key] = [output[key][_] for _ in np.where(~idx_S2)[0]]
# remove duplicates
output = SDS_slope.remove_duplicates(output)
# remove shorelines from images with poor georeferencing (RMSE > 10 m)
output = SDS_slope.remove_inaccurate_georef(output, 10)
# plot shorelines and transects
fig,ax = plt.subplots(1,1,figsize=[12, 8])
fig.set_tight_layout(True)
ax.axis('equal')
ax.set(xlabel='Eastings', ylabel='Northings', title=sitename)
ax.grid(linestyle=':', color='0.5')
for i in range(len(output['shorelines'])):
coords = output['shorelines'][i]
date = output['dates'][i]
ax.plot(coords[:,0], coords[:,1], '.', label=date.strftime('%d-%m-%Y'))
for key in transects.keys():
ax.plot(transects[key][:,0],transects[key][:,1],'k--',lw=2)
ax.text(transects[key][-1,0], transects[key][-1,1], key)
# a more robust method to compute intersection is needed here to avoid outliers
# as these can affect the slope detection algorithm
settings_transects = { # parameters for shoreline intersections
'along_dist': 25, # along-shore distance to use for intersection
'max_std': 15, # max std for points around transect
'max_range': 30, # max range for points around transect
'min_val': -100, # largest negative value along transect (landwards of transect origin)
# parameters for outlier removal
'nan/max': 'auto', # mode for removing outliers ('auto', 'nan', 'max')
'prc_std': 0.1, # percentage to use in 'auto' mode to switch from 'nan' to 'max'
'max_cross_change': 40, # two values of max_cross_change distance to use
}
# compute intersections [advanced version]
cross_distance = SDS_slope.compute_intersection(output, transects, settings_transects)
# remove outliers [advanced version]
cross_distance = SDS_slope.reject_outliers(cross_distance,output,settings_transects)
# plot time-series
SDS_slope.plot_cross_distance(output['dates'],cross_distance)
# slope estimation settings
days_in_year = 365.2425
seconds_in_day = 24*3600
settings_slope = {'slope_min': 0.035, # minimum slope to trial
'slope_max': 0.2, # maximum slope to trial
'delta_slope': 0.005, # resolution of slopes to trial
'date_range': [1999,2020], # range of dates over which to perform the analysis
'n_days': 8, # sampling period [days]
'n0': 50, # for Nyquist criterium
'freqs_cutoff': 1./(seconds_in_day*30), # 1 month frequency
'delta_f': 1e-8, # deltaf for buffer around max peak
'prc_conf': 0.05, # percentage above minimum to define confidence bands in energy curve
}
settings_slope['date_range'] = [pytz.utc.localize(datetime(settings_slope['date_range'][0],5,1)),
pytz.utc.localize(datetime(settings_slope['date_range'][1],1,1))]
beach_slopes = SDS_slope.range_slopes(settings_slope['slope_min'], settings_slope['slope_max'], settings_slope['delta_slope'])
# clip the dates between 1999 and 2020 as we need at least 2 Landsat satellites in orbit simultaneously
idx_dates = [np.logical_and(_>settings_slope['date_range'][0],_<settings_slope['date_range'][1]) for _ in output['dates']]
dates_sat = [output['dates'][_] for _ in np.where(idx_dates)[0]]
for key in cross_distance.keys():
cross_distance[key] = cross_distance[key][idx_dates]
#%% 3. Tide levels
# Option 1. if FES2014 global tide model is setup
import pyfes
filepath = r'C:\Users\z5030440\OneDrive - UNSW\fes-2.9.1-Source\data\fes2014'
config_ocean = os.path.join(filepath, 'ocean_tide.ini')
config_load = os.path.join(filepath, 'load_tide.ini')
ocean_tide = pyfes.Handler("ocean", "io", config_ocean)
load_tide = pyfes.Handler("radial", "io", config_load)
# coordinates of the location (always select a point 1-2km offshore from the beach)
coords = [151.332209, -33.723772]
# get tide time-series with 15 minutes intervals
time_step = 15*60
dates_fes, tide_fes = SDS_slope.compute_tide(coords,settings_slope['date_range'],
time_step,ocean_tide,load_tide)
# get tide level at time of image acquisition
tide_sat = SDS_slope.compute_tide_dates(coords, dates_sat, ocean_tide, load_tide)
# plot tide time-series
fig, ax = plt.subplots(1,1,figsize=(12,3), tight_layout=True)
ax.set_title('Sub-sampled tide levels')
ax.grid(which='major', linestyle=':', color='0.5')
ax.plot(dates_fes, tide_fes, '-', color='0.6')
ax.plot(dates_sat, tide_sat, '-o', color='k', ms=4, mfc='w',lw=1)
ax.set_ylabel('tide level [m]')
ax.set_ylim(SDS_slope.get_min_max(tide_fes))
# Option 2. otherwise load tide levels associated with "dates_sat" from a file
# with open(os.path.join('example_data', sitename + '_tide' + '.pkl'), 'rb') as f:
# tide_data = pickle.load(f)
# tide_sat = tide_data['tide']
# plot time-step distribution
t = np.array([_.timestamp() for _ in dates_sat]).astype('float64')
delta_t = np.diff(t)
fig, ax = plt.subplots(1,1,figsize=(12,3), tight_layout=True)
ax.grid(which='major', linestyle=':', color='0.5')
bins = np.arange(np.min(delta_t)/seconds_in_day, np.max(delta_t)/seconds_in_day+1,1)-0.5
ax.hist(delta_t/seconds_in_day, bins=bins, ec='k', width=1);
ax.set(xlabel='timestep [days]', ylabel='counts',
xticks=settings_slope['n_days']*np.arange(0,20),
xlim=[0,50], title='Timestep distribution');
# find tidal peak frequency
settings_slope['freqs_max'] = SDS_slope.find_tide_peak(dates_sat,tide_sat,settings_slope)
#%% 4. Estimate beach slopes along the transects
slope_est, cis = dict([]), dict([])
for key in cross_distance.keys():
# remove NaNs
idx_nan = np.isnan(cross_distance[key])
dates = [dates_sat[_] for _ in np.where(~idx_nan)[0]]
tide = tide_sat[~idx_nan]
composite = cross_distance[key][~idx_nan]
# apply tidal correction
tsall = SDS_slope.tide_correct(composite,tide,beach_slopes)
SDS_slope.plot_spectrum_all(dates,composite,tsall,settings_slope,key)
slope_est[key],cis[key] = SDS_slope.integrate_power_spectrum(dates,tsall,settings_slope)
print('Beach slope at transect %s: %.3f'%(key, slope_est[key]))