This repository has been archived by the owner on Jan 23, 2019. It is now read-only.
forked from vedaldi/svm-struct-matlab
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsvm_struct_learn_mex.c
448 lines (398 loc) · 15.7 KB
/
svm_struct_learn_mex.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/***********************************************************************/
/* */
/* svm_struct_main.c */
/* */
/* Command line interface to the alignment learning module of the */
/* Support Vector Machine. */
/* */
/* Author: Thorsten Joachims */
/* Date: 03.07.04 */
/* */
/* Copyright (c) 2004 Thorsten Joachims - All rights reserved */
/* */
/* This software is available for non-commercial use only. It must */
/* not be modified and distributed without prior permission of the */
/* author. The author is not responsible for implications from the */
/* use of this software. */
/* */
/***********************************************************************/
#ifdef __cplusplus
extern "C" {
#endif
#include "svm_light/svm_common.h"
#include "svm_light/svm_learn.h"
#ifdef __cplusplus
}
#endif
# include "svm_struct/svm_struct_learn.h"
# include "svm_struct/svm_struct_common.h"
# include "svm_struct_api.h"
#include <stdio.h>
#include <string.h>
#include <assert.h>
void read_input_parameters (int, char **,
long *, long *,
STRUCT_LEARN_PARM *, LEARN_PARM *, KERNEL_PARM *,
int *);
void arg_split (char *string, int *argc, char ***argv) ;
void init_qp_solver() ;
void free_qp_solver() ;
/** ------------------------------------------------------------------
** @brief MEX entry point
**/
void
mexFunction (int nout, mxArray ** out, int nin, mxArray const ** in)
{
SAMPLE sample; /* training sample */
LEARN_PARM learn_parm;
KERNEL_PARM kernel_parm;
STRUCT_LEARN_PARM struct_parm;
STRUCTMODEL structmodel;
int alg_type;
enum {IN_ARGS=0, IN_SPARM} ;
enum {OUT_W=0} ;
char arg [1024 + 1] ;
int argc ;
char ** argv ;
mxArray const * sparm_array;
mxArray const * patterns_array ;
mxArray const * labels_array ;
mxArray const * kernelFn_array ;
int numExamples, ei ;
mxArray * model_array;
/* SVM-light is not fully reentrant, so we need to run this patch first */
init_qp_solver() ;
verbosity = 0 ;
kernel_cache_statistic = 0 ;
if (nin != 2) {
mexErrMsgTxt("Two arguments required") ;
}
/* Parse ARGS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
if (! uIsString(in[IN_ARGS], -1)) {
mexErrMsgTxt("ARGS must be a string") ;
}
mxGetString(in[IN_ARGS], arg, sizeof(arg) / sizeof(char)) ;
arg_split (arg, &argc, &argv) ;
svm_struct_learn_api_init(argc+1, argv-1) ;
read_input_parameters (argc+1,argv-1,
&verbosity, &struct_verbosity,
&struct_parm, &learn_parm,
&kernel_parm, &alg_type ) ;
if (kernel_parm.kernel_type != LINEAR &&
kernel_parm.kernel_type != CUSTOM) {
mexErrMsgTxt ("Only LINEAR or CUSTOM kerneles are supported") ;
}
/* Parse SPARM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
sparm_array = in [IN_SPARM] ;
// jk remove
if (! sparm_array) {
mexErrMsgTxt("SPARM must be a structure") ;
}
struct_parm.mex = sparm_array ;
patterns_array = mxGetField(sparm_array, 0, "patterns") ;
if (! patterns_array ||
! mxIsCell(patterns_array)) {
mexErrMsgTxt("SPARM.PATTERNS must be a cell array") ;
}
numExamples = mxGetNumberOfElements(patterns_array) ;
labels_array = mxGetField(sparm_array, 0, "labels") ;
if (! labels_array ||
! mxIsCell(labels_array) ||
! mxGetNumberOfElements(labels_array) == numExamples) {
mexErrMsgTxt("SPARM.LABELS must be a cell array "
"with the same number of elements of "
"SPARM.PATTERNS") ;
}
sample.n = numExamples ;
sample.examples = (EXAMPLE *) my_malloc (sizeof(EXAMPLE) * numExamples) ;
for (ei = 0 ; ei < numExamples ; ++ ei) {
sample.examples[ei].x.mex = mxGetCell(patterns_array, ei) ;
sample.examples[ei].y.mex = mxGetCell(labels_array, ei) ;
sample.examples[ei].y.isOwner = 0 ;
}
if (struct_verbosity >= 1) {
mexPrintf("There are %d training examples\n", numExamples) ;
}
kernelFn_array = mxGetField(sparm_array, 0, "kernelFn") ;
if (! kernelFn_array && kernel_parm.kernel_type == CUSTOM) {
mexErrMsgTxt("SPARM.KERNELFN must be defined for CUSTOM kernels") ;
}
if (kernelFn_array) {
MexKernelInfo * info ;
if (mxGetClassID(kernelFn_array) != mxFUNCTION_CLASS) {
mexErrMsgTxt("SPARM.KERNELFN must be a valid function handle") ;
}
info = (MexKernelInfo*) kernel_parm.custom ;
info -> structParm = sparm_array ;
info -> kernelFn = kernelFn_array ;
}
/* Learning ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
switch (alg_type) {
case 0:
svm_learn_struct(sample,&struct_parm,&learn_parm,&kernel_parm,&structmodel,NSLACK_ALG) ;
break ;
case 1:
svm_learn_struct(sample,&struct_parm,&learn_parm,&kernel_parm,&structmodel,NSLACK_SHRINK_ALG);
break ;
case 2:
svm_learn_struct_joint(sample,&struct_parm,&learn_parm,&kernel_parm,&structmodel,ONESLACK_PRIMAL_ALG);
break ;
case 3:
svm_learn_struct_joint(sample,&struct_parm,&learn_parm,&kernel_parm,&structmodel,ONESLACK_DUAL_ALG);
break ;
case 4:
svm_learn_struct_joint(sample,&struct_parm,&learn_parm,&kernel_parm,&structmodel,ONESLACK_DUAL_CACHE_ALG);
break ;
case 9:
svm_learn_struct_joint_custom(sample,&struct_parm,&learn_parm,&kernel_parm,&structmodel);
break ;
default:
mexErrMsgTxt("Unknown algorithm type") ;
}
/* Write output ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* Warning: The model contains references to the original data 'docs'.
If you want to free the original data, and only keep the model, you
have to make a deep copy of 'model'. */
// jk change
model_array = newMxArrayEncapsulatingSmodel (&structmodel) ;
out[OUT_W] = mxDuplicateArray (model_array) ;
destroyMxArrayEncapsulatingSmodel (model_array) ;
free_struct_sample (sample) ;
free_struct_model (structmodel) ;
svm_struct_learn_api_exit () ;
free_qp_solver () ;
}
/** ------------------------------------------------------------------
** @brief Parse argument string
**/
void
read_input_parameters (int argc,char *argv[],
long *verbosity,long *struct_verbosity,
STRUCT_LEARN_PARM *struct_parm,
LEARN_PARM *learn_parm, KERNEL_PARM *kernel_parm,
int *alg_type)
{
long i ;
(*alg_type)=DEFAULT_ALG_TYPE;
/* SVM struct options */
(*struct_verbosity)=1;
struct_parm->C=-0.01;
struct_parm->slack_norm=1;
struct_parm->epsilon=DEFAULT_EPS;
struct_parm->custom_argc=0;
struct_parm->loss_function=DEFAULT_LOSS_FCT;
struct_parm->loss_type=DEFAULT_RESCALING;
struct_parm->newconstretrain=100;
struct_parm->ccache_size=5;
struct_parm->batch_size=100;
/* SVM light options */
(*verbosity)=0;
strcpy (learn_parm->predfile, "trans_predictions");
strcpy (learn_parm->alphafile, "");
learn_parm->biased_hyperplane=1;
learn_parm->remove_inconsistent=0;
learn_parm->skip_final_opt_check=0;
learn_parm->svm_maxqpsize=10;
learn_parm->svm_newvarsinqp=0;
learn_parm->svm_iter_to_shrink=-9999;
learn_parm->maxiter=100000;
learn_parm->kernel_cache_size=40;
learn_parm->svm_c=99999999; /* overridden by struct_parm->C */
learn_parm->eps=0.001; /* overridden by struct_parm->epsilon */
learn_parm->transduction_posratio=-1.0;
learn_parm->svm_costratio=1.0;
learn_parm->svm_costratio_unlab=1.0;
learn_parm->svm_unlabbound=1E-5;
learn_parm->epsilon_crit=0.001;
learn_parm->epsilon_a=1E-10; /* changed from 1e-15 */
learn_parm->compute_loo=0;
learn_parm->rho=1.0;
learn_parm->xa_depth=0;
kernel_parm->kernel_type=0;
kernel_parm->poly_degree=3;
kernel_parm->rbf_gamma=1.0;
kernel_parm->coef_lin=1;
kernel_parm->coef_const=1;
strcpy (kernel_parm->custom,"empty");
/* Parse -x options, delegat --x ones */
for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) {
switch ((argv[i])[1])
{
case 'a': i++; strcpy(learn_parm->alphafile,argv[i]); break;
case 'c': i++; struct_parm->C=atof(argv[i]); break;
case 'p': i++; struct_parm->slack_norm=atol(argv[i]); break;
case 'e': i++; struct_parm->epsilon=atof(argv[i]); break;
case 'k': i++; struct_parm->newconstretrain=atol(argv[i]); break;
case 'h': i++; learn_parm->svm_iter_to_shrink=atol(argv[i]); break;
case '#': i++; learn_parm->maxiter=atol(argv[i]); break;
case 'm': i++; learn_parm->kernel_cache_size=atol(argv[i]); break;
case 'w': i++; (*alg_type)=atol(argv[i]); break;
case 'o': i++; struct_parm->loss_type=atol(argv[i]); break;
case 'n': i++; learn_parm->svm_newvarsinqp=atol(argv[i]); break;
case 'q': i++; learn_parm->svm_maxqpsize=atol(argv[i]); break;
case 'l': i++; struct_parm->loss_function=atol(argv[i]); break;
case 'f': i++; struct_parm->ccache_size=atol(argv[i]); break;
case 'b': i++; struct_parm->batch_size=atof(argv[i]); break;
case 't': i++; kernel_parm->kernel_type=atol(argv[i]); break;
case 'd': i++; kernel_parm->poly_degree=atol(argv[i]); break;
case 'g': i++; kernel_parm->rbf_gamma=atof(argv[i]); break;
case 's': i++; kernel_parm->coef_lin=atof(argv[i]); break;
case 'r': i++; kernel_parm->coef_const=atof(argv[i]); break;
case 'u': i++; strcpy(kernel_parm->custom,argv[i]); break;
case 'v': i++; (*struct_verbosity)=atol(argv[i]); break;
case 'y': i++; (*verbosity)=atol(argv[i]); break;
case '-':
strcpy(struct_parm->custom_argv[struct_parm->custom_argc++],argv[i]);
i++;
strcpy(struct_parm->custom_argv[struct_parm->custom_argc++],argv[i]);
break;
default:
{
char msg [1024+1] ;
#ifndef WIN
snprintf(msg, sizeof(msg)/sizeof(char),
"Unrecognized option '%s'",argv[i]) ;
#else
sprintf(msg, sizeof(msg)/sizeof(char),
"Unrecognized option '%s'",argv[i]) ;
#endif
mexErrMsgTxt(msg) ;
}
}
}
/* whatever is left is an error */
if (i < argc) {
char msg [1024+1] ;
#ifndef WIN
snprintf(msg, sizeof(msg)/sizeof(char),
"Unrecognized argument '%s'", argv[i]) ;
#else
sprintf(msg, sizeof(msg)/sizeof(char),
"Unrecognized argument '%s'", argv[i]) ;
#endif
mexErrMsgTxt(msg) ;
}
/* Check parameter validity */
if(learn_parm->svm_iter_to_shrink == -9999) {
learn_parm->svm_iter_to_shrink=100;
}
if((learn_parm->skip_final_opt_check)
&& (kernel_parm->kernel_type == LINEAR)) {
mexWarnMsgTxt("It does not make sense to skip the final optimality check for linear kernels.");
learn_parm->skip_final_opt_check=0;
}
if((learn_parm->skip_final_opt_check)
&& (learn_parm->remove_inconsistent)) {
mexErrMsgTxt("It is necessary to do the final optimality check when removing inconsistent examples.");
}
if((learn_parm->svm_maxqpsize<2)) {
char msg [1025] ;
#ifndef WIN
snprintf(msg, sizeof(msg)/sizeof(char),
"Maximum size of QP-subproblems not in valid range: %ld [2..]",learn_parm->svm_maxqpsize) ;
#else
sprintf(msg, sizeof(msg)/sizeof(char),
"Maximum size of QP-subproblems not in valid range: %ld [2..]",learn_parm->svm_maxqpsize) ;
#endif
mexErrMsgTxt(msg) ;
}
if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) {
char msg [1025] ;
#ifndef WIN
snprintf(msg, sizeof(msg)/sizeof(char),
"Maximum size of QP-subproblems [%ld] must be larger than the number of"
" new variables [%ld] entering the working set in each iteration.",
learn_parm->svm_maxqpsize, learn_parm->svm_newvarsinqp) ;
#else
sprintf(msg, sizeof(msg)/sizeof(char),
"Maximum size of QP-subproblems [%ld] must be larger than the number of"
" new variables [%ld] entering the working set in each iteration.",
learn_parm->svm_maxqpsize, learn_parm->svm_newvarsinqp) ;
#endif
mexErrMsgTxt(msg) ;
}
if(learn_parm->svm_iter_to_shrink<1) {
char msg [1025] ;
#ifndef WIN
snprintf(msg, sizeof(msg)/sizeof(char),
"Maximum number of iterations for shrinking not in valid range: %ld [1,..]",
learn_parm->svm_iter_to_shrink);
#else
sprintf(msg, sizeof(msg)/sizeof(char),
"Maximum number of iterations for shrinking not in valid range: %ld [1,..]",
learn_parm->svm_iter_to_shrink);
#endif
mexErrMsgTxt(msg) ;
}
if(struct_parm->C<0) {
mexErrMsgTxt("You have to specify a value for the parameter '-c' (C>0)!");
}
if(((*alg_type) < 0) || (((*alg_type) > 5) && ((*alg_type) != 9))) {
mexErrMsgTxt("Algorithm type must be either '0', '1', '2', '3', '4', or '9'!");
}
if(learn_parm->transduction_posratio>1) {
mexErrMsgTxt("The fraction of unlabeled examples to classify as positives must "
"be less than 1.0 !!!");
}
if(learn_parm->svm_costratio<=0) {
mexErrMsgTxt("The COSTRATIO parameter must be greater than zero!");
}
if(struct_parm->epsilon<=0) {
mexErrMsgTxt("The epsilon parameter must be greater than zero!");
}
if((struct_parm->ccache_size<=0) && ((*alg_type) == 4)) {
mexErrMsgTxt("The cache size must be at least 1!");
}
if(((struct_parm->batch_size<=0) || (struct_parm->batch_size>100))
&& ((*alg_type) == 4)) {
mexErrMsgTxt("The batch size must be in the interval ]0,100]!");
}
if((struct_parm->slack_norm<1) || (struct_parm->slack_norm>2)) {
mexErrMsgTxt("The norm of the slacks must be either 1 (L1-norm) or 2 (L2-norm)!");
}
if((struct_parm->loss_type != SLACK_RESCALING)
&& (struct_parm->loss_type != MARGIN_RESCALING)) {
mexErrMsgTxt("The loss type must be either 1 (slack rescaling) or 2 (margin rescaling)!");
}
if(learn_parm->rho<0) {
mexErrMsgTxt("The parameter rho for xi/alpha-estimates and leave-one-out pruning must"
" be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the"
" Generalization Performance of an SVM Efficiently, ICML, 2000.)!");
}
if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) {
mexErrMsgTxt("The parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero"
"for switching to the conventional xa/estimates described in T. Joachims,"
"Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)") ;
}
parse_struct_parameters (struct_parm) ;
}
void
arg_split (char *string, int *argc, char ***argv)
{
size_t size;
char *d, *p;
for (size = 1, p = string; *p; p++) {
if (isspace((int) *p)) {
size++;
}
}
size++; /* leave space for final NULL pointer. */
*argv = (char **) my_malloc(((size * sizeof(char *)) + (p - string) + 1));
for (*argc = 0, p = string, d = ((char *) *argv) + size*sizeof(char *);
*p != 0; ) {
(*argv)[*argc] = NULL;
while (*p && isspace((int) *p)) p++;
if (*argc == 0 && *p == '#') {
break;
}
if (*p) {
char *s = p;
(*argv)[(*argc)++] = d;
while (*p && !isspace((int) *p)) p++;
memcpy(d, s, p-s);
d += p-s;
*d++ = 0;
while (*p && isspace((int) *p)) p++;
}
}
}