generated from kyegomez/Python-Package-Template
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
249 lines (207 loc) · 7.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
from typing import Any, Dict, List
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
from datasets import load_dataset
from loguru import logger
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from transformers import AutoTokenizer
from cognetx import CogNetX
# Assume the MultimodalModel and its components are defined as before
# Include the code for MultimodalModel from previous steps or import it if defined in another module
# Configure loguru logger
logger.add(
"training.log", format="{time} {level} {message}", level="INFO"
)
# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters and configuration
config = {
"speech_input_dim": 80,
"speech_num_layers": 4,
"speech_num_heads": 8,
"encoder_dim": 256,
"decoder_dim": 512,
"vocab_size": 30522, # Using BERT tokenizer vocab size
"embedding_dim": 512,
"decoder_num_layers": 6,
"decoder_num_heads": 8,
"dropout": 0.1,
"depthwise_conv_kernel_size": 31,
"batch_size": 8,
"num_epochs": 5,
"learning_rate": 1e-4,
"save_path": "./model_checkpoints",
}
# Ensure the save path exists
os.makedirs(config["save_path"], exist_ok=True)
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Define custom dataset
class MultimodalDataset(Dataset):
def __init__(self):
# Load datasets
self.speech_dataset = load_dataset(
"librispeech_asr", "clean", split="train.100"
)
self.image_dataset = load_dataset(
"ms_coco", "2014", split="train"
)
self.video_dataset = load_dataset("msr_vtt", split="train")
# Preprocessing transforms for images and videos
self.image_transform = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
]
)
self.video_transform = transforms.Compose(
[
transforms.Resize((112, 112)),
transforms.ToTensor(),
]
)
# Truncate datasets to the smallest size for alignment
min_size = min(
len(self.speech_dataset),
len(self.image_dataset),
len(self.video_dataset),
)
self.size = min_size
def __len__(self) -> int:
return self.size
def __getitem__(self, idx: int) -> Dict[str, Any]:
# Load speech data
speech_sample = self.speech_dataset[idx]
speech_audio = speech_sample["audio"]["array"]
speech_text = speech_sample["text"]
# Load image data
image_sample = self.image_dataset[idx]
image = image_sample["image"]
image_caption = image_sample["caption"]
# Load video data
video_sample = self.video_dataset[idx]
video = video_sample["video"]
video_caption = video_sample["text"]
# Align text output (for demonstration, use speech transcription)
text_output = speech_text
# Preprocess speech
speech_input = self.process_speech(speech_audio)
# Preprocess image
image_input = self.process_image(image)
# Preprocess video
video_input = self.process_video(video)
# Tokenize text_output
tgt_input = self.process_text(text_output)
return {
"speech_input": speech_input,
"vision_input": image_input,
"video_input": video_input,
"tgt_input": tgt_input,
}
def process_speech(self, audio: Any) -> torch.Tensor:
# Convert audio to Mel-spectrogram
speech_tensor = torch.tensor(audio, dtype=torch.float32)
mel_spectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=16000,
n_mels=config["speech_input_dim"],
)(speech_tensor)
# Transpose to (time_steps, feature_dim)
speech_input = mel_spectrogram.transpose(0, 1)
return speech_input
def process_image(self, image: Any) -> torch.Tensor:
image = image.convert("RGB")
image_input = self.image_transform(image)
return image_input
def process_video(self, video: Any) -> torch.Tensor:
# For demonstration, use the first frame as a placeholder
video_frames = []
for frame in video:
frame = frame.convert("RGB")
frame_tensor = self.video_transform(frame)
video_frames.append(frame_tensor)
video_input = torch.stack(video_frames, dim=1) # (C, T, H, W)
return video_input
def process_text(self, text: str) -> torch.Tensor:
# Tokenize text
tokens = tokenizer.encode(text, add_special_tokens=True)
tgt_input = torch.tensor(tokens, dtype=torch.long)
return tgt_input
def collate_fn(batch: List[Dict[str, Any]]) -> Dict[str, Any]:
# Collate function to handle variable-length sequences
speech_inputs = [item["speech_input"] for item in batch]
vision_inputs = [item["vision_input"] for item in batch]
video_inputs = [item["video_input"] for item in batch]
tgt_inputs = [item["tgt_input"] for item in batch]
# Pad sequences
speech_inputs_padded = nn.utils.rnn.pad_sequence(
speech_inputs, batch_first=True
)
tgt_inputs_padded = nn.utils.rnn.pad_sequence(
tgt_inputs, batch_first=False
)
vision_inputs_tensor = torch.stack(vision_inputs)
video_inputs_tensor = torch.stack(video_inputs)
return {
"speech_input": speech_inputs_padded.to(device),
"vision_input": vision_inputs_tensor.to(device),
"video_input": video_inputs_tensor.to(device),
"tgt_input": tgt_inputs_padded.to(device),
}
# Initialize dataset and dataloader
dataset = MultimodalDataset()
dataloader = DataLoader(
dataset,
batch_size=config["batch_size"],
shuffle=True,
collate_fn=collate_fn,
num_workers=4,
)
# Initialize model, optimizer, and loss function
model = CogNetX(config).to(device)
optimizer = optim.Adam(model.parameters(), lr=config["learning_rate"])
criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)
# Training loop
for epoch in range(config["num_epochs"]):
logger.info(f"Starting epoch {epoch + 1}/{config['num_epochs']}")
model.train()
total_loss = 0.0
for batch_idx, batch in enumerate(dataloader):
speech_input = batch["speech_input"]
vision_input = batch["vision_input"]
video_input = batch["video_input"]
tgt_input = batch["tgt_input"]
# Shift tgt_input for teacher forcing
tgt_input_in = tgt_input[:-1, :]
tgt_input_out = tgt_input[1:, :]
# Forward pass
optimizer.zero_grad()
output = model(
speech_input, vision_input, video_input, tgt_input_in
)
# Flatten output and target tensors
output_flat = output.view(-1, config["vocab_size"])
tgt_input_out_flat = tgt_input_out.reshape(-1)
# Compute loss
loss = criterion(output_flat, tgt_input_out_flat)
# Backward pass and optimization
loss.backward()
optimizer.step()
total_loss += loss.item()
if (batch_idx + 1) % 10 == 0:
avg_loss = total_loss / 10
logger.info(
f"Epoch [{epoch + 1}/{config['num_epochs']}], "
f"Step [{batch_idx + 1}/{len(dataloader)}], "
f"Loss: {avg_loss:.4f}"
)
total_loss = 0.0
# Save model checkpoint
checkpoint_path = os.path.join(
config["save_path"], f"model_epoch_{epoch + 1}.pt"
)
torch.save(model.state_dict(), checkpoint_path)
logger.info(f"Saved model checkpoint to {checkpoint_path}")