-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcait_small.py
215 lines (163 loc) · 6.1 KB
/
cait_small.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/cait.py
from random import randrange
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def dropout_layers(layers, dropout):
if dropout == 0:
return layers
num_layers = len(layers)
to_drop = torch.zeros(num_layers).uniform_(0., 1.) < dropout
# make sure at least one layer makes it
if all(to_drop):
rand_index = randrange(num_layers)
to_drop[rand_index] = False
layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop]
return layers
# classes
class LayerScale(nn.Module):
def __init__(self, dim, fn, depth):
super().__init__()
if depth <= 18: # epsilon detailed in section 2 of paper
init_eps = 0.1
elif depth > 18 and depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
scale = torch.zeros(1, 1, dim).fill_(init_eps)
self.scale = nn.Parameter(scale)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.attend = nn.Softmax(dim=-1)
self.mix_heads_pre_attn = nn.Parameter(torch.randn(heads, heads))
self.mix_heads_post_attn = nn.Parameter(torch.randn(heads, heads))
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, context=None):
b, n, _, h = *x.shape, self.heads
context = x if not exists(context) else torch.cat((x, context), dim=1)
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
# talking heads, pre-softmax
dots = einsum('b h i j, h g -> b g i j', dots, self.mix_heads_pre_attn)
attn = self.attend(dots)
# talking heads, post-softmax
attn = einsum('b h i j, h g -> b g i j',
attn, self.mix_heads_post_attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0., layer_dropout=0.):
super().__init__()
self.layers = nn.ModuleList([])
self.layer_dropout = layer_dropout
for ind in range(depth):
self.layers.append(nn.ModuleList([
LayerScale(dim, PreNorm(dim, Attention(
dim, heads=heads, dim_head=dim_head, dropout=dropout)), depth=ind + 1),
LayerScale(dim, PreNorm(dim, FeedForward(
dim, mlp_dim, dropout=dropout)), depth=ind + 1)
]))
def forward(self, x, context=None):
layers = dropout_layers(self.layers, dropout=self.layer_dropout)
for attn, ff in layers:
x = attn(x, context=context) + x
x = ff(x) + x
return x
class CaiT(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
cls_depth,
heads,
mlp_dim,
dim_head=64,
dropout=0.,
emb_dropout=0.,
layer_dropout=0.
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)',
p1=patch_size, p2=patch_size),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.patch_transformer = Transformer(
dim, depth, heads, dim_head, mlp_dim, dropout, layer_dropout)
self.cls_transformer = Transformer(
dim, cls_depth, heads, dim_head, mlp_dim, dropout, layer_dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
x += self.pos_embedding[:, :n]
x = self.dropout(x)
x = self.patch_transformer(x)
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)
x = self.cls_transformer(cls_tokens, context=x)
return self.mlp_head(x[:, 0])
def Cait_cifar(num_classes):
return CaiT(
image_size=32,
patch_size=4,
num_classes=num_classes,
dim=int(512),
depth=6, # depth of transformer for patch to patch attention only
cls_depth=2, # depth of cross attention of CLS tokens to patch
heads=6,
mlp_dim=256,
dropout=0.1,
emb_dropout=0.1,
layer_dropout=0.05
)