diff --git a/src/legendoptics/data/pen_wlscomponent.dat b/src/legendoptics/data/pen_wlscomponent.dat index 86011f5..25382f5 100644 --- a/src/legendoptics/data/pen_wlscomponent.dat +++ b/src/legendoptics/data/pen_wlscomponent.dat @@ -1,4 +1,11 @@ # nm dimensionless + +# ad-hoc data points added by legend-pygeom-optics +358.000000 0.000000 +365.000000 0.000080 +370.000000 0.000297 + +# from here on data from [Leonhardt2024]_ 375.016000 0.000594 375.808000 0.000690 376.600000 0.000767 diff --git a/src/legendoptics/pen.py b/src/legendoptics/pen.py index ea11eaf..f1e468d 100644 --- a/src/legendoptics/pen.py +++ b/src/legendoptics/pen.py @@ -69,9 +69,13 @@ def pen_wls_emission() -> tuple[Quantity, Quantity]: """WLS Emission spectrum. [Leonhardt2024]_ measure the emission spectrum of a PEN sample made from the same pellets as - in LEGEMD-200 sample at an excitation wavelength of 128nm and at 87K, so exactly in our + in LEGEND-200 sample at an excitation wavelength of 128nm and at 87K, so exactly in our experimental conditions. + .. note:: + Data points below 375 nm are an ad-hoc continuation of the measured data to zero, avoiding + a steep step. They are not based on actual measurements. + .. optics-plot:: """ return readdatafile("pen_wlscomponent.dat") @@ -97,7 +101,6 @@ def pen_wls_absorption() -> tuple[Quantity, Quantity]: For geometries with thick PEN objects, the absorption length should not matter too much—in a certain range, all light will be absorbed anyway. - The absorbing range and approximate magnitude have been extracted from [Ouchi2006]_, figure 1. .. optics-plot:: {'yscale': 'log'}