-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
232 lines (180 loc) · 9.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import io
import json
import os
from transformers import BertTokenizer, RobertaTokenizer, AlbertTokenizer, XLNetTokenizer, CamembertTokenizer, FlaubertTokenizer
from configure import parse_args
import time
import datetime
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
args = parse_args()
def read_sents(path, marker):
""" Read the .tsv files with the annotated sentences.
File format: sent_id, sentence, verb, verb_idx, label"""
def open_file(file):
sentences = []
labels = []
with open(file, 'r', encoding='utf-8') as f:
for line in f:
l = line.strip().split('\t')
sentences.append([l[-4], l[-3], int(l[-2])])
labels.append(int(l[-1]))
return sentences,labels
train_sentences, train_labels = open_file(path + '/' + marker + '_train.tsv')
val_sentences, val_labels = open_file(path + '/' + marker + '_val.tsv')
test_sentences, test_labels = open_file(path + '/' + marker + '_test.tsv')
return train_sentences, train_labels, val_sentences, val_labels, test_sentences, test_labels
def tokenize_and_pad(sentences):
""" We are using .encode_plus. This does not make specialized attn masks
like in our selectional preferences experiment. Revert to .encode if
necessary."""
input_ids = []
segment_ids = [] # token type ids
attention_masks = []
if (args.transformer_model).split("-")[0] == 'bert':
tok = BertTokenizer.from_pretrained(args.transformer_model)
elif (args.transformer_model).split("-")[0] == 'roberta':
tok = RobertaTokenizer.from_pretrained(args.transformer_model)
elif (args.transformer_model).split("-")[0] == 'albert':
tok = AlbertTokenizer.from_pretrained(args.transformer_model )
elif (args.transformer_model).split("-")[0] == 'xlnet':
# Tokenize all of the sentences and map the tokens to their word IDs.
tok = XLNetTokenizer.from_pretrained(args.transformer_model )
elif 'flaubert' in args.transformer_model:
# Tokenize all of the sentences and map the tokens to their word IDs.
tok = FlaubertTokenizer.from_pretrained(args.transformer_model )
elif 'camembert' in args.transformer_model:
tok = CamembertTokenizer.from_pretrained(args.transformer_model)
for sentence_list in sentences:
encoded_dict = tok.encode_plus(
sentence_list[0], # the sentence
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
max_length = 128, # Pad & truncate all sentences.
padding = 'max_length',
truncation = True,
return_attention_mask = True, # Construct attn. masks.
# return_tensors = 'pt', # Return pytorch tensors.
)
input_ids.append(
encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask'])
# Add segment ids, add 1 for verb idx
segment_id = [0] * 128
verb_idx = find_real_verb_idx(sentence_list, encoded_dict['input_ids'], tok)
if verb_idx: # if False, the verb is not in the first 128 tokens
for idx in verb_idx:
segment_id[idx] = 1
segment_ids.append(segment_id)
return input_ids, attention_masks, segment_ids
def find_real_verb_idx(sentence_list, encoded_sentence, tokenizer):
encoded_verb = tokenizer.encode(sentence_list[1])
try:
if len(encoded_verb) == 3 \
and not args.transformer_model.startswith('roberta'): # verb as is + [CLS] + [SEP]
verb_idx = [encoded_sentence.index(encoded_verb[1])]
else:
decoded_verb = [x.replace('Ġ', '') for x in tokenizer.convert_ids_to_tokens(encoded_verb)]
decoded_sent = [x.replace('Ġ', '') for x in tokenizer.convert_ids_to_tokens(encoded_sentence)]
verb_segment = [seg for seg in decoded_verb
if not any(seg.startswith(x) for x in ['[', '<'])]
verb_idx = [decoded_sent.index(seg) for seg in verb_segment]
return verb_idx
except ValueError:
try:
# the verb is segmented on its own, but not segmented in the sentence!
verb = sentence_list[1]
decoded_sent = [x.replace('Ġ', '') for x in tokenizer.convert_ids_to_tokens(encoded_sentence)]
verb_idx = [decoded_sent.index(verb)]
return verb_idx
except ValueError:
verb_idx = [sentence_list[2] +1]
# the sequence is way too long and the verb is chopped!
return verb_idx
def flat_accuracy(labels, preds):
""" Function to calculate the accuracy of our predictions vs labels. """
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
def format_time(elapsed):
'''
Takes a time in seconds and returns a string hh:mm:ss
'''
# Round to the nearest second.
elapsed_rounded = int(round((elapsed)))
# Format as hh:mm:ss
return str(datetime.timedelta(seconds=elapsed_rounded))
def decode_result(encoded_sequence):
if (args.transformer_model).split("-")[0] == 'bert':
tok = BertTokenizer.from_pretrained(args.transformer_model )
elif (args.transformer_model).split("-")[0] == 'roberta':
tok = RobertaTokenizer.from_pretrained(args.transformer_model )
elif (args.transformer_model).split("-")[0] == 'albert':
tok = AlbertTokenizer.from_pretrained(args.transformer_model )
elif (args.transformer_model).split("-")[0] == 'xlnet':
tok = XLNetTokenizer.from_pretrained(args.transformer_model )
elif 'camembert' in args.transformer_model:
tok = CamembertTokenizer.from_pretrained(args.transformer_model )
elif 'flaubert' in args.transformer_model:
tok = FlaubertTokenizer.from_pretrained(args.transformer_model )
# decode + remove special tokens
tokens_to_remove = ['[PAD]', '[SEP]', '[CLS]', '<pad>', '<sep>', '<s>', '</s>']
decoded_sequence = [w.replace('Ġ', '').replace('▁', '').replace('</w>', '')
for w in list(tok.convert_ids_to_tokens(encoded_sequence))
if not w.strip() in tokens_to_remove]
return ' '.join(decoded_sequence)
def split_train_val_test(X, y,
frac_train=0.8, frac_val=0.1, frac_test=0.1,
random_state=2018):
# Split original dataframe into train and temp dataframes.
X_train, X_temp, y_train, y_temp = train_test_split(X,
y,
stratify=y,
test_size=(1.0 - frac_train),
random_state=random_state)
# Split the temp dataframe into val and test dataframes.
relative_frac_test = frac_test / (frac_val + frac_test)
X_val, X_test, y_val, y_test = train_test_split(X_temp,
y_temp,
stratify=y_temp,
test_size=relative_frac_test,
random_state=random_state)
assert len(X) == len(X_train) + len(X_val) + len(X_test)
return X_train, y_train, X_val, y_val, X_test, y_test
def plot_attn(words, attentions, layer, heads):
"""Plots attention maps for the given example and attention heads."""
width = 3
example_sep = 3
word_height = 1
pad = 0.1
for ei, head in enumerate(heads):
yoffset = 1
xoffset = ei * width * example_sep
attn = attentions[layer][head]
attn = np.array(attn)
# print(attn.shape)
attn /= attn.sum(axis=-1, keepdims=True)
n_words = len(words)
for position, word in enumerate(words):
plt.text(xoffset + 0, yoffset - position * word_height, word,
ha="right", va="center")
plt.text(xoffset + width, yoffset - position * word_height, word,
ha="left", va="center")
for i in range(1, n_words):
for j in range(1, n_words):
alpha_size = float(attn[i, j].item())
plt.plot([xoffset + pad, xoffset + width - pad],
[yoffset - word_height * i, yoffset - word_height * j],
color="blue", linewidth=1, alpha=alpha_size)
def get_features_per_layer(features, layer_idx):
features_per_layer = {x:[] for x in range(len(features['all_hidden_states']))}
for sent_idx in features_per_layer:
temp = extract_features(features, sent_idx)
temp_layer = []
for token_idx in temp:
layer_features = [x[layer_idx] for x in temp.values()]
layer_features = np.concatenate(layer_features)
temp_layer.append(layer_features)
features_per_layer[sent_idx] = np.concatenate(temp_layer)
return features_per_layer