-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiFileRecogniser.py
168 lines (105 loc) · 5.22 KB
/
MultiFileRecogniser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# -*- coding: utf-8 -*-
#
# Author: Roland Pihlakas, 2023 - 2024
#
# roland@simplify.ee
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
if __name__ == '__main__':
print("Starting...")
import os
import sys
import traceback
from collections import defaultdict, Counter, OrderedDict
from Recogniser import recogniser
import json_tricks
from Utilities import init_logging, safeprint, print_exception, loop, debugging, is_dev_machine, data_dir, Timer, read_file, save_file, read_raw, save_raw, read_txt, save_txt, strtobool
from TimeLimit import time_limit
# if __name__ == "__main__":
# init_logging(os.path.basename(__file__), __name__, max_old_log_rename_tries = 1)
if __name__ == "__main__":
os.chdir(os.path.dirname(os.path.realpath(__file__)))
if is_dev_machine:
from pympler import asizeof
async def multi_file_recogniser(do_open_ended_analysis = None, do_closed_ended_analysis = None, extract_message_indexes = None, extract_line_numbers = None, argv = None):
argv = argv if argv else sys.argv
all_error_msgs = [] # TODO
all_counts = []
all_unexpected_labels = []
all_unused_labels = []
all_expressions = []
for current_file in argv[1:]:
safeprint(f"Analysing file {current_file}...")
current_argv = ["", current_file]
analysis_response = await recogniser(do_open_ended_analysis, do_closed_ended_analysis, extract_message_indexes, extract_line_numbers, current_argv)
error_code = analysis_response["error_code"]
if error_code > 0:
all_error_msgs.append(analysis_response["error_msg"])
else:
all_counts.append(analysis_response["counts"])
all_unexpected_labels.append(analysis_response["unexpected_labels"])
all_unused_labels.append(analysis_response["unused_labels"])
all_expressions.append((current_file, analysis_response["expressions"]), )
#/ for current_file in argv[1:]:
safeprint("All files done.")
aggregated_counts = Counter()
for counts in all_counts:
for person, person_counts in counts.items():
aggregated_counts += person_counts
aggregated_unexpected_labels = Counter()
for unexpected_labels in all_unexpected_labels:
for label in unexpected_labels:
aggregated_unexpected_labels[label] += 1
aggregated_counts = OrderedDict(aggregated_counts.most_common())
aggregated_counts = OrderedDict(sorted(aggregated_counts.items())) # Sort persons in counts field
aggregated_unexpected_labels = OrderedDict(aggregated_unexpected_labels.most_common())
if len(all_unused_labels) == 0:
aggregated_unused_labels = [] if do_closed_ended_analysis else None
else:
# this algorithm keeps the order of the unused labels list
aggregated_unused_labels = all_unused_labels[0]
for current_unused_labels in all_unused_labels[1:]:
current_unused_labels_set = set(current_unused_labels) # optimisation
aggregated_unused_labels = [x for x in aggregated_unused_labels if x in current_unused_labels_set]
#/ for unused_labels in all_unused_labels[1:]:
#/ if len(all_unused_labels) == 0:
grouped_labels = OrderedDict()
for grouped_label in aggregated_counts.keys():
grouped_label_data = []
for current_file, person_expressions in all_expressions:
for expression_data in person_expressions:
expression_labels = expression_data["labels"]
if grouped_label in expression_labels.keys():
entry = {
"grouped_label": grouped_label,
"all_labels": expression_labels,
"file": current_file,
"text": expression_data["text"]
}
if "message_index" in expression_data:
entry.update({ "message_index": expression_data["message_index"] })
if "line_number" in expression_data:
entry.update({ "line_number": expression_data["line_number"] })
grouped_label_data.append(entry)
#/ if labels_intersection:
#/ for expression_data in person_expressions:
#/ for person_expressions in all_expressions:
grouped_labels[grouped_label] = grouped_label_data
#/ for label in aggregated_counts.keys():
aggregated_analysis_response = {
"counts": aggregated_counts,
"unexpected_labels": aggregated_unexpected_labels, # TODO: use dict with counts in single-file output too
"unused_labels": aggregated_unused_labels,
"grouped_labels": grouped_labels,
}
aggregated_response_json = json_tricks.dumps(aggregated_analysis_response, indent=2) # json_tricks preserves dictionary orderings
aggregated_response_filename = "aggregated_stats.json"
# aggregated_response_filename = os.path.join("..", aggregated_response_filename) # the applications default data location is
await save_txt(aggregated_response_filename, aggregated_response_json, quiet = True, make_backup = True, append = False)
safeprint("Aggregation done.")
#/ async def multi_file_recognise()
if __name__ == '__main__':
loop.run_until_complete(multi_file_recogniser())