-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradix_tree.c
259 lines (249 loc) · 7.33 KB
/
radix_tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#include"radix_tree.h"
static radix_leafnode_t* last_leafnode;
static int radix_tree_height = sizeof(ptr_t)* 8 / BITS;
//内存池扩大函数,num:新内存池的大小,=-1使用默认值,单位:页
pool_t get_new_pool(radix_tree_t*t, int num)
{
if (num <= 0)num = INIT_POOL_SIZE;
else num *= MEMPAGE;
pool_t pool = (pool_t)malloc(num);
if (pool == NULL)return NULL;
pool->next = t->pool->next;
pool->prev = t->pool;
t->pool->next->prev = pool;
t->pool->next = pool;
t->pool = pool;
//格式化,将申请的内存全部设置为节点
radix_node_t * node = (radix_node_t*)((char*)pool + sizeof(radix_pool));
uint32 i;
for (i = 0; i < (num - sizeof(radix_pool)-1) / sizeof(radix_node_t); ++i) {
node[i].parent = &(node[i + 1]);
}
node[i++].parent = NULL;
t->free = node;
pool->start = (char*)((char*)node + sizeof(radix_node_t)*i);
pool->size = num - sizeof(radix_node_t)*i - sizeof(radix_pool);
return pool;
}
pool_t get_new_leafpool(radix_tree_t* t, int num)
{
if (num <= 0)num = INIT_POOL_SIZE;
else { num *= MEMPAGE; }
pool_t leafpool = (pool_t)malloc(num);
if (leafpool == NULL)return NULL;
leafpool->next = t->leafpool->next;
leafpool->prev = t->leafpool;
t->leafpool->next->prev = leafpool;
t->leafpool->next = leafpool;
t->leafpool = leafpool;
radix_leafnode_t* node = (radix_leafnode_t*)((char*)leafpool + sizeof(radix_pool));
uint32 i;
for (i = 0; i < (num - sizeof(radix_pool)-1) / sizeof(radix_leafnode_t); ++i) {
node[i].next = &(node[i + 1]);
}
node[i++].next = NULL;
t->lfree = node;
leafpool->start = (char*)((char*)node + sizeof(radix_leafnode_t)* i);
leafpool->size = num - sizeof(radix_leafnode_t)* i - sizeof(radix_pool);
return leafpool;
}
radix_leafnode_t* radix_leafnode_alloc(radix_tree_t* t)
{
radix_leafnode_t* node;
if (t->free != NULL) {
node = t->lfree;
t->lfree = node->next;
}
else {
if (t->leafpool->size < sizeof(radix_leafnode_t)) {
get_new_leafpool(t, -1);
}
if (t->lfree != NULL) {
node = t->lfree;
t->lfree = node->next;
}
else {
node = (radix_leafnode_t*)t->leafpool->start;
t->leafpool->start += sizeof(radix_leafnode_t);
t->leafpool->size -= sizeof(radix_leafnode_t);
}
}
node->next = (radix_leafnode_t*)NULL;
node->key = (uint32)NULL;
node->value = (ptr_t)NULL;
return node;
}
//创建一个节点,从内存池中取出可以使用的节点
radix_node_t* radix_node_alloc(radix_tree_t* t)
{
radix_node_t* node;
if (t->free != NULL) {//从free中提取节点
node = t->free;
t->free = node->parent;
}
else {//在内存池中寻找可以使用的内存
if (t->pool->size < sizeof(radix_node_t)) {//如果剩余空间不够分配,则重新分配
get_new_pool(t, -1);
}
if (t->free != NULL) {//从free中提取节点
node = t->free;
t->free = node->parent;
}
else {
node = (radix_node_t*)t->pool->start;
t->pool->start += sizeof(radix_node_t);
t->pool->size -= sizeof(radix_node_t);
}
}
node->child[0] = NULL;
node->child[1] = NULL;
node->child[2] = NULL;
node->child[3] = NULL;
node->parent = NULL;
return node;
}
//创建管理结构
radix_tree_t* radix_tree_create()
{
int i;
radix_tree_t* tree = (radix_tree_t*)malloc(sizeof(radix_tree_t));
if (tree == NULL)return NULL;
tree->pool = (pool_t)malloc(INIT_POOL_SIZE);
if (tree->pool == NULL) { free(tree); return NULL; }
tree->leafpool = (pool_t)malloc(INIT_POOL_SIZE);
if (tree->leafpool == NULL) { free(tree->pool); free(tree); return NULL; }
radix_node_t* node = (radix_node_t*)((char*)tree->pool + sizeof(radix_pool));
tree->pool->next = tree->pool;
tree->pool->prev = tree->pool;
for (i = 1; i < (INIT_POOL_SIZE - sizeof(radix_pool)-1) / sizeof(radix_node_t); ++i) {
node[i].parent = &node[i + 1];
}
node[i++].parent = NULL;
node[0].child[0] = NULL;
node[0].child[1] = NULL;
node[0].child[2] = NULL;
node[0].child[3] = NULL;
node[0].parent = NULL;
i *= sizeof(radix_node_t);
tree->pool->start = ((char*)node + i);
tree->pool->size = INIT_POOL_SIZE - sizeof(radix_pool)-i;
//叶节点
radix_leafnode_t* lnode = (radix_leafnode_t*)((char*)tree->leafpool + sizeof(radix_pool));
tree->leafpool->next = tree->leafpool;
tree->leafpool->prev = tree->leafpool;
for (i = 1; i < (INIT_POOL_SIZE - sizeof(radix_pool)-1) / sizeof(radix_leafnode_t); ++i) {
lnode[i].next = &(lnode[i + 1]);
}
lnode[i++].next = NULL;
lnode[0].key = (uint32)NULL;
lnode[0].next = lnode;
lnode[0].value = (ptr_t)NULL;
last_leafnode = lnode;
i *= sizeof(radix_leafnode_t);
tree->leafpool->start = ((char*)lnode + i);
tree->leafpool->size = INIT_POOL_SIZE - sizeof(radix_pool)-i;
tree->free = &node[1];
tree->lfree = &lnode[1];
tree->root = node;
return tree;
}
//插入
int radix_tree_insert(radix_tree_t* t, uint32 key, ptr_t value)
{
int i, temp;
radix_node_t* node, *child;
radix_leafnode_t* lnode;
node = t->root;
for (i = 0; i < radix_tree_height - 1; i++) {
temp = CHECK_BITS(key, i);
if (!node->child[temp]) {
child = radix_node_alloc(t);
if (child == NULL)return -1;
child->parent = node;
node->child[temp] = child;
node = node->child[temp];
}
else {
node = node->child[temp];
}
}
temp = CHECK_BITS(key, i);
lnode = (radix_leafnode_t*)node->child[temp];
if (lnode != NULL)return -1;
lnode = radix_leafnode_alloc(t);
if (lnode == NULL)return -1;
lnode->next = last_leafnode->next;
last_leafnode->next = lnode;
last_leafnode = lnode;
node->child[temp] = (radix_node_t*)lnode;
if (lnode->value == value)return RADIX_INSERT_VALUE_SAME;
if (lnode->value != (ptr_t)NULL)return RADIX_INSERT_VALUE_OCCUPY;
lnode->value = value;
lnode->key = key;
return 0;
}
//由于插入时会创建很多节点,为了提高速度这里只会删除最底层的指定节点
int radix_tree_delete(radix_tree_t* t, uint32 key)
{
radix_node_t* node = t->root;
int i = 0, temp = 0;
for (i = 0; i < radix_tree_height - 1; ++i) {
temp = CHECK_BITS(key, i);
node = node->child[temp];
if (node == NULL) return RADIX_DELETE_ERROR;
}
temp = CHECK_BITS(key, i);
radix_leafnode_t* lnode;
lnode = (radix_leafnode_t*)node->child[temp];
if (lnode == NULL)return RADIX_DELETE_ERROR;
node->child[temp] = NULL;
//将lnode回归内存池
lnode->next = t->lfree->next;
t->lfree->next = lnode;
return 0;
}
//节点查找函数
//key为索引,返回叶节点被查找到的值
ptr_t radix_tree_find(radix_tree_t* t, uint32 key)
{
int i = 0, temp;
radix_node_t* node;
node = t->root;
for (i; i < radix_tree_height - 1; ++i) {
temp = CHECK_BITS(key, i);
node = node->child[temp];
if (node == NULL)return 0;
}
temp = CHECK_BITS(key, i);
radix_leafnode_t* lnode;
lnode = (radix_leafnode_t*)node->child[temp];
if (lnode == NULL)return 0;
return lnode->value;
}
//遍历叶节点,返回叶节点数量
int radix_tree_traversal(radix_tree_t* t)
{
int i = 0;
radix_leafnode_t* temp = last_leafnode, *node = last_leafnode;
do {
#ifdef _RADIX_NDOE_PRINT
printf("key:%x, value:%x\n", node->key, node->value);
#endif
node = node->next;
i++;
} while (node != temp);
return i;
}
//遍历叶节点,可以传入一个函数进行处理
int radix_tree_traversal_fun(radix_tree_t* t, void(*fun)(uint32, uint32))
{
int i = 0;
radix_leafnode_t* temp = last_leafnode, *node = last_leafnode;
do {
//printf("key:%x, value:%x\n", node->key, node->value);
fun(node->key, node->value);
node = node->next;
i++;
} while (node != temp);
return i;
}