-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrial_multi_dim_ordered_dict.py
58 lines (50 loc) · 1.71 KB
/
Trial_multi_dim_ordered_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from collections import OrderedDict
# class DefaultOrderedDict(OrderedDict):
# def __missing__(self, key):
# self[key] = type(self)()
# return self[key]
# d = DefaultOrderedDict()
# d['a']['b']['c'] = 'd'
# d['a'][1][2] = 3
# d['f']['g']['e'] = 'g'
# d['f'][5][6] = 7
# d['a']['foo']['bar'] = 'hello world'
# print [(i, j, k, d[i][j][k]) for i in d for j in d[i] for k in d[i][j]]
# x = OrderedDict()
# for i in range(0,10):
# x[i] = {}
# for j in range(0,10):
# x[i][j] = i*j
# print x
# direct = '/home/lindsayad/gdrive/MooseOutput/'
# file_name = direct + 'Townsend_energy_electron_density.csv'
# rewrite = False
# with open(file_name,'r') as fin:
# c = fin.read(1)
# if c == '"':
# rewrite = True
# fin.seek(0)
# data = fin.read().splitlines(True)
# if rewrite:
# with open(file_name, 'w') as fout:
# fout.writelines(data[1:])
data_dir = '/home/lindsayad/gdrive/MooseOutput/'
job_names = ['Townsend_energy','Rate_coeff_energy','Townsend_lfa','Townsend_var_elastic_energy']
dep_var_names = ['ion_density','electron_density','potential']
data = OrderedDict()
for job in job_names:
data[job] = OrderedDict()
for dep_var in dep_var_names:
# file_name = data_dir + job + '_' + dep_var + '.csv'
# rewrite = False
# with open(file_name,'r') as fin:
# c = fin.read(1)
# if c == '"':
# rewrite = True
# fin.seek(0)
# data = fin.read().splitlines(True)
# if rewrite:
# with open(file_name, 'w') as fout:
# fout.writelines(data[1:])
data[job][dep_var] = 1.
# data[job][dep_var] = np.loadtxt(file_name,delimiter=',')