-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinite_element.pyx
177 lines (153 loc) · 4.85 KB
/
finite_element.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def finite_element():
# import numpy as np
# import matplotlib.pyplot as plt
# Dirichlet formulation where cells are shifted by h/2
length = 1.0
N = 40 # number of cells
numNodes = N + 1 # number of nodes
numUnknownNodes = numNodes - 2
m = numUnknownNodes
h = length/N
# dt below is the maximum value that ensures no oscillations will grow for an explicit time stepping scheme
dt = h**2/2
# dt = h
t = 0.0
# Initialization of the problem
position = np.zeros(numNodes)
q = np.zeros(numNodes) # Solution vector including BCs
u = np.zeros(m) # Solution vector without BCs
S = np.zeros(m)
S_conv = np.zeros(m)
M = np.zeros((m,m)) # Mass matrix
A = np.zeros((m,m)) # Diffusion matrix
C = np.zeros((m,m)) # Convection matrix
Rxn = np.zeros((m,m)) # Reaction matrix
q[0] = 1.0
q[numNodes-1] = 0.0
for i in range(0,numNodes):
position[i] = i*h
A[0][0] = -2.0
A[0][1] = 1.0
A[m-1][m-2] = 1.0
A[m-1][m-1] = -2.0
C[0][1] = 1.0
C[m-1][m-2] = -1.0
M[0][0] = 2.0/3.0
M[0][1] = 1.0/6.0
M[m-1][m-2] = 1.0/6.0
M[m-1][m-1] = 2.0/3.0
for i in range(1,m-1):
A[i,i-1] = 1.0
A[i,i] = -2.0
A[i,i+1] = 1.0
C[i][i+1] = 1.0
C[i][i-1] = -1.0
M[i][i-1] = 1.0/6.0
M[i][i] = 2.0/3.0
M[i][i+1] = 1.0/6.0
A = 1/h**2 * A
C = 1/(2*h) * C
# use this loop for mass lumping
for i in range(0,m):
sum = 0
for j in range(0,m):
sum += M[i][j]
M[i][j] = 0.0
M[i][i] = sum
Minv = np.linalg.inv(M)
# Create reaction matrix
for i in range(0,m):
Rxn[i][i] = -1.0
# Add in effect of Dirichlet boundary conditions
S[0] = 1.0
S = 1/h**2 * S
S_conv[0] = -1.0
S_conv = 1/(2*h) * S_conv
I = np.zeros((m,m))
for i in range(0,m):
I[i][i] = 1.0
discType = 0
if discType == 1:
B = I - dt*(A-C+Rxn) # Backward Euler
if discType == 2:
B = I-dt/2*(A-C+Rxn) # Crank Nicholson
output = q
np.set_printoptions(precision=16)
plt.clf()
j = 0
while t < 1.0:
j += 1
t = t + dt
# Forward Euler, explicit
if discType==0:
# u = u + dt*(np.dot(A-C+Rxn,u)+S-S_conv) # Diffusion advection reaction (convection and reaction not yet implemented)
u = u + dt*np.dot(Minv,np.dot(A,u)+S) # Diffusion
# Implicit
elif discType==1 or discType==2:
# Backward Euler
if discType==1:
b = u + dt*(S-S_conv)
# Crank Nicholson
if discType==2:
b = np.dot(I+dt/2*(A-C+Rxn),u) + dt*(S-S_conv)
Bmod=np.zeros((m,m))
bmod = np.zeros(m)
Bmod[0][1]=B[0][1]/B[0][0]
bmod[0] = b[0]/B[0][0]
for i in range(1,m-1):
Bmod[i][i+1] = B[i][i+1]/(B[i][i]-B[i][i-1]*Bmod[i-1][i])
for i in range(1,m):
bmod[i] = (b[i]-B[i][i-1]*bmod[i-1])/(B[i][i]-B[i][i-1]*Bmod[i-1][i])
u[m-1] = bmod[m-1]
for i in range(m-2,-1,-1):
u[i] = bmod[i]-Bmod[i][i+1]*u[i+1]
for i in range(0,m):
q[i+1]=u[i]
output = np.concatenate((output,q),axis=0)
plt.plot(position,output[j*(numNodes):(j+1)*(numNodes)])
# plt.plot(position,q,label='Advection diffusion reaction')
# j = 0
# t = 0
# u = np.zeros(m) # Solution vector without BCs
# while t < 1.0:
# j += 1
# t = t + dt
# # Forward Euler, explicit
# if discType==0:
# u = u + dt*(np.dot(A-C,u)+S-S_conv)
# for i in range(0,m):
# q[i+1]=u[i]
# plt.plot(position,q,label='Advection diffusion')
# j = 0
# t = 0
# u = np.zeros(m) # Solution vector without BCs
# while t < 1.0:
# j += 1
# t = t + dt
# # Forward Euler, explicit
# if discType==0:
# u = u + dt*(np.dot(A,u)+S)
# for i in range(0,m):
# q[i+1]=u[i]
# plt.plot(position,q,label='diffusion')
# j = 0
# t = 0
# u = np.zeros(m) # Solution vector without BCs
# while t < 1.0:
# j += 1
# t = t + dt
# # Forward Euler, explicit
# if discType==0:
# u = u + dt*(np.dot(A+Rxn,u)+S)
# for i in range(0,m):
# q[i+1]=u[i]
# plt.plot(position,q,label='Diffusion reaction')
# plt.legend(loc=1)
# if discType==0:
# plt.savefig('Forward_Euler.png',format='png')
# elif discType==1:
# plt.savefig('Backward_Euler.png',format='png')
# elif discType==2:
# plt.savefig('Crank_Nicholson.png',format='png')
# plt.title('Crank-Nicholson time discretization')
plt.show()