-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathinference.py
233 lines (200 loc) · 8.01 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys, time
from os.path import basename
import matplotlib.pyplot as plt
import glob
import numpy as np
import cv2 as cv
import tensorflow as tf
import argparse
import os
from sklearn.metrics import confusion_matrix
sys.path.append("models")
from FC_DenseNet_Tiramisu import build_fc_densenet
from Encoder_Decoder import build_encoder_decoder
from Encoder_Decoder_Skip import build_encoder_decoder_skip
from RefineNet import build_refinenet
from HF_FCN import build_hf_fcn
label_values = ['imp_surfaces', 'building', 'low_vegetation',
'tree', 'car', 'clutter']
def colour_dict(x):
"""
Dictionairy of colour codes for visualizing segmentation results
# Arguments
x: Value of the current pixel
# Returns
Colour code
"""
# Color palette
palette = {0: (255, 255, 255), # Impervious surfaces (white)
1: (0, 0, 255), # Buildings (dark blue)
2: (0, 255, 255), # Low vegetation (light blue)
3: (0, 255, 0), # Tree (green)
4: (255, 255, 0), # Car (yellow)
5: (255, 0, 0), # Clutter (red)
6: (0, 0, 0)}
return {
0: [255, 255, 255],
1: [0, 0, 255],
2: [0, 255, 255],
3: [0, 255, 0],
4: [255, 255, 0],
5: [255, 0, 0],
6: [0, 0, 0]
}[x]
def colour_code_segmentation(image):
"""
Given a 1-channel array of class keys, colour code the segmentation results.
# Arguments
image: single channel array where each value represents the class key.
# Returns
Colour coded image for segmentation visualization
"""
w = image.shape[0]
h = image.shape[1]
x = np.zeros([w,h,3])
for i in range(0, w):
for j in range(0, h):
x[i, j, :] = colour_dict(image[i, j])
return x
# process prediction on full test images
def get_predict(ortho, sess, num_classes, l_ch, l_height, l_width, d_ch, d_height, d_width, offset=0):
h_limit = ortho.shape[0]
w_limit = ortho.shape[1]
# create input, label patches
rects = [] # input data region
o_patches = []
for y in range(offset, h_limit, l_height):
for x in range(offset, w_limit, l_width):
if (y + d_height > h_limit):
y = h_limit - d_height
if (x + d_width > w_limit):
x = w_limit - d_width
rects.append((y - offset, x - offset,
y - offset + d_height, x - offset + d_width))
# ortho patch
o_patch = ortho[y:y + d_height, x:x + d_width, :]
# o_patch = o_patch.swapaxes(0, 2).swapaxes(1, 2)
o_patches.append(o_patch)
o_patches = np.asarray(o_patches, dtype=np.float32)
# the number of patches
n_patches = len(o_patches)
print 'n_patches %s' % n_patches
# create predict, label patches
pred_patches = np.zeros(
(n_patches, l_height, l_width, num_classes), dtype=np.float32)
for i in range(n_patches):
input_image = np.expand_dims(o_patches[i], axis=0)
prob_image = sess.run(prob,feed_dict={input:input_image})
pred_patches[i] = np.array(prob_image[0])
pred_img = np.zeros((h_limit, w_limit, num_classes), dtype=np.float32)
for i, (rect, predict) in enumerate(zip(rects, pred_patches)):
pred_img[rect[0] + d_height / 2 - l_height / 2:
rect[0] + d_height / 2 + l_height / 2,
rect[1] + d_width / 2 - l_width / 2:
rect[1] + d_width / 2 + l_width / 2, :] += predict
out_h = pred_img.shape[0] - (d_height - l_height)
out_w = pred_img.shape[1] - (d_width - l_width)
pred_img = pred_img[d_height / 2 - l_height / 2:out_h,
d_width / 2 - l_width / 2:out_w, :]
ortho_img = ortho[d_height / 2 - l_height / 2 + offset:out_h,
d_width / 2 - l_width / 2 + offset:out_w, :]
return pred_img, ortho_img
def metrics(predictions, gts):
""" Compute the metrics from the RGB-encoded predictions and ground truthes
Args:
predictions (array list): list of RGB-encoded predictions (2D maps)
gts (array list): list of RGB-encoded ground truthes (2D maps, same dims)
"""
prediction_labels = np.concatenate([l.flatten() for l in predictions])
gt_labels = np.concatenate([l.flatten() for l in gts])
cm = confusion_matrix(
gt_labels,
prediction_labels,
range(len(label_values)))
print "Confusion matrix :"
print cm
print "---"
# Compute global accuracy
accuracy = sum([cm[x][x] for x in range(len(cm))])
total = sum(sum(cm))
print "{} pixels processed".format(total)
print "Total accuracy : {}%".format(accuracy * 100 / float(total))
print "---"
# Compute F1 score
F1Score = np.zeros(len(label_values))
for i in xrange(len(label_values)):
try:
F1Score[i] = 2. * cm[i,i] / (np.sum(cm[i,:]) + np.sum(cm[:,i]))
except:
# Ignore exception if there is no element in class i for test set
pass
print "F1Score :"
for l_id, score in enumerate(F1Score):
print "{}: {}".format(label_values[l_id], score)
print "---"
# Compute kappa coefficient
total = np.sum(cm)
pa = np.trace(cm) / float(total)
pe = np.sum(np.sum(cm, axis=0) * np.sum(cm, axis=1)) / float(total*total)
kappa = (pa - pe) / (1 - pe);
print "Kappa: " + str(kappa)
if __name__ == '__main__':
gpu_id = 1
num_classes = 6
infer_ids = [32,34,37]
print("Start prediction ...")
with tf.device('/gpu:'+str(gpu_id)):
input = tf.placeholder(tf.float32,shape=[None,None,None,3])
output = tf.placeholder(tf.float32,shape=[None,None,None,num_classes])
network = build_fc_densenet(input, preset_model = 'FC-DenseNet103', num_classes=num_classes)
prob = tf.nn.softmax(network)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess=tf.Session(config=config)
saver=tf.train.Saver(max_to_keep=1000)
# sess.run(tf.global_variables_initializer())
print('Loaded latest model checkpoint')
saver.restore(sess, "checkpoints_#14/latest_model.ckpt")
result_dir = 'prediction_#14'
print result_dir
if not os.path.exists(result_dir):
os.mkdir(result_dir)
offset = 0
l_ch, l_height, l_width = 1, 512, 512
d_ch, d_height, d_width = 3, 512, 512
times = 0
pred_label_list = []
gt_label_list = []
BASE_FOLDER = '/home/mmvc/Xiang_Li/DL_DATA/Vaihingen/'
#BASE_FOLDER = '/media/zhoun/Data/lx/caffe/DeepNetsForEO/ISPRS/Vaihingen/'
print "Processing {} images...".format(len(infer_ids),-1)
for l in infer_ids:
img_fname = 'top_mosaic_09cm_area{}.tif'.format(l)
ortho = cv.imread(BASE_FOLDER + 'top/' + img_fname,-1)
ortho = ortho.astype('float32')
ortho = ortho/255.0
gt_label = cv.imread(BASE_FOLDER + 'gts_numpy/top_mosaic_09cm_area{}.tif'.format(l),-1)
st = time.time()
print 'origin ortho.shape',ortho.shape
pred_img, ortho_img = get_predict(ortho, sess, num_classes,
l_ch, l_height, l_width,
d_ch, d_height, d_width, offset)
print time.time() - st, 'sec'
times += time.time() - st
#pred class label images
pred_label = np.argmax(pred_img,axis=2)
pred_img_colour = colour_code_segmentation(pred_label)
# cv.imwrite('%s/pred_%d_%s.png' % (result_dir, offset, basename(img_fname)),pred_img * 125)
cv.imwrite('%s/pred_colour_%d_%s.png' % (result_dir, offset, basename(img_fname)),pred_img_colour)
cv.imwrite('%s/ortho_%d_%s.png' % (result_dir, offset, basename(img_fname)),ortho_img)
np.save('%s/pred_%d_%s' % (result_dir, offset, basename(img_fname)),
pred_img)
print img_fname
pred_label_list.append(pred_label)
gt_label_list.append(gt_label)
times /= 10
print times
print "Computing metrics..."
metrics(pred_label_list, gt_label_list)