-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayes_classifier_old.py
79 lines (54 loc) · 2.14 KB
/
bayes_classifier_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import glob, os, pickle
import math
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
import sklearn.svm
def loadDataset(filePath):
with open(filePath, "rb") as pklFile:
return np.array(pickle.load(pklFile, encoding="utf-8"))
#f1 = '/Users/liammeier/moral-reasoning/consPapersNew.pkl'
#f2 = '/Users/liammeier/moral-reasoning/deonPapersNew.pkl'
f1 = '/Users/liammeier/moral-reasoning/JSTORconsPapers.pkl'
f2 = '/Users/liammeier/moral-reasoning/JSTORdeonPapers.pkl'
consArray = loadDataset(f1)
deonArray = loadDataset(f2)
X = []
y = []
for i in consArray:
X.append(i)
y.append('cons')
for i in deonArray:
X.append(i)
y.append('deon')
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 50)
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(X_train)
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
clf = MultinomialNB().fit(X_train_tfidf, y_train)
X_test_counts = count_vect.transform(X_test)
X_test_tfidf = tfidf_transformer.transform(X_test_counts)
predicted = clf.predict(X_test_tfidf)
for i, j in zip(y_test, predicted):
print('%r => %s' % (i, j))
#Now running Bayes with new features (see featureExtraction.py)
print("Naive Bayes with Vector Features")
def loadDataset(filePath):
with open(filePath, "rb") as pklFile:
return pickle.load(pklFile, encoding="utf-8")
X = loadDataset('/Users/liammeier/moral-reasoning/vecX.pkl')
y = loadDataset('/Users/liammeier/moral-reasoning/classY.pkl')
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 50)
clf = MultinomialNB().fit(X_train, y_train)
predicted = clf.predict(X_test)
for i, j in zip(y_test, predicted):
print('%r => %s' % (i, j))
print("SVM with Vector Featues")
clf = sklearn.svm.LinearSVC().fit(X_train, y_train)
predicted = clf.predict(X_test)
for i, j in zip(y_test, predicted):
print('%r => %s' % (i, j))