-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyTest.py
188 lines (153 loc) · 6.23 KB
/
pyTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#account_name='parkinsonblob'
#account_key='xqbYRwVHQLogpIDeOridgxXzBdJQaA7OU6lRT8s8XkQjye3EPBJ7QFvJOQ/rlU5gDFE2OLaH5sg5BKzongYT8Q=='
#
account_name='blobsensordata'
account_key='zUYv9mIC9KPr/k+Sa15y4mN6mtozuJcF/n979cqojT4HaMUj3ahEHaPBVtpDihwfO78JTk8sQ29xCaxGWfjtSA=='
#container_name = 'preprocessed-data'
from azure.storage.blob import BlockBlobService
#from azure.storage.blob import PublicAccess
import pandas as pd
from io import StringIO
from datetime import date, timedelta
from decimal import Decimal
blob_service = BlockBlobService(account_name=account_name, account_key = account_key)
container_name = 'adventisdatainput'
blobs = []
marker = None
while True:
batch = blob_service.list_blobs(container_name, marker=marker)
blobs.extend(batch)
if not batch.next_marker:
break
marker = batch.next_marker
for blob in blobs:
print(blob.name)
blob_list = []
blob_date = []
for blob in blobs:
blob_list.append(blob.name)
blob_date.append(blob.name[:10])
blob_table = pd.DataFrame()
blob_table['date'] = blob_date
blob_table['blobname'] = blob_list
Today = date.today()
Today = Today.strftime('%Y-%m-%d')
Yst = date.today() - timedelta(1)
Yst = Yst.strftime('%Y-%m-%d')
blob_table = blob_table[(blob_table['date']==Today)|(blob_table['date']==Yst)]
blob_df = pd.DataFrame()
for blobname in blob_table['blobname']:
blob_Class = blob_service.get_blob_to_text(container_name=container_name, blob_name = blobname)
blob_String =blob_Class.content
blob_df1 = pd.read_csv(StringIO(blob_String),low_memory=False)
blob_df = blob_df.append(blob_df1)
blob_df.index = range(blob_df.shape[0])
print(blob_df.shape[0])
#convert-time
from datetime import datetime
from datetime import timedelta
timeseries = []
for time in blob_df['starttime']:
timeseries.append(datetime.strptime(time, "%Y-%m-%dT%H:%M:%S.0000000Z")+ timedelta(hours=8))
blob_df['eventtime'] = timeseries
print(blob_df.head(5))
blob_df = blob_df[blob_df['tasklocation']=='Bedroom']
blob_df = blob_df[(blob_df['deviceid']=='SG-04-avent001') | (blob_df['deviceid']=='SG-04-avent002')| (blob_df['deviceid']=='SG-04-testingN')]
hublist = blob_df.deviceid.unique()
hublist = list(hublist)
print(hublist)
# set up the status: start/end
blob_df['status1'] = 'duration'
blob_df['status2'] = 'duration'
sleep = []
wakeup = []
sleep_time = pd.DataFrame()
sleep_time['hubid'] = hublist
for hdbid in hublist:
blob_hub1 = blob_df[blob_df['deviceid']==hdbid]
print(hdbid)
if blob_hub1.shape[0]==0:
wakeupPoint = 'nan'
sleep_point = 'nan'
else:
blob_hub1.index = range(blob_hub1.shape[0])
i = 1
n = blob_hub1.shape[0]-1
while (i < n):
delta = blob_hub1.at[i, 'eventtime'] - blob_hub1.at[i-1, 'eventtime']
if delta.seconds >1800:
blob_hub1.at[i-1, 'status1'] = 'start'
blob_hub1.at[i, 'status2'] = 'end'
i=i+1
starting = blob_hub1[blob_hub1['status1']=='start']
ending = blob_hub1[blob_hub1['status2']=='end']
flag = date.today() - timedelta(1)
flag = flag.strftime('%Y-%m-%d')
flag = flag + ' 20:29:59'
flag = datetime.strptime(flag, "%Y-%m-%d %H:%M:%S")
starting = starting[starting['eventtime']>flag]
#starting.index = range(starting.shape[0])
if starting.shape[0]==0:
k = blob_hub1.shape[0]-1
sleep_point = blob_hub1.iloc[k]['eventtime']
else:
sleep_point = starting.iloc[0]['eventtime']
flag = date.today()
flag = flag.strftime('%Y-%m-%d')
flag = flag + ' 02:30:01'
flag = datetime.strptime(flag, "%Y-%m-%d %H:%M:%S")
if sleep_point >flag:
blob_hub2 = blob_hub1[blob_hub1['eventtime']>(date.today()-timedelta(1))]
blob_hub2.index = range(blob_hub2.shape[0])
sleep_point = blob_hub2.iloc[0]['eventtime']
if sleep_point >flag:
sleep_point = 'nan'
# getting the wake up time
starting = blob_hub1[blob_hub1['status1']=='start']
ending = blob_hub1[blob_hub1['status2']=='end']
flag = date.today()
flag = flag.strftime('%Y-%m-%d')
flag = flag + ' 08:30:01'
flag = datetime.strptime(flag, "%Y-%m-%d %H:%M:%S")
ending = ending[ending['eventtime']<flag]
flag = date.today()
flag = flag.strftime('%Y-%m-%d')
flag = flag + ' 05:00:01'
flag = datetime.strptime(flag, "%Y-%m-%d %H:%M:%S")
if ending.shape[0]==0:
blob_hub1 = blob_hub1[blob_hub1['eventtime']>date.today()]
if blob_hub1.shape[0]==0:
wakeupPoint = 'nan'
else:
wakeupPoint = blob_hub1.iloc[0]['eventtime']
if wakeupPoint <flag:
blob_hub1 = blob_hub1[blob_hub1['eventtime']>flag]
if blob_hub1.shape[0]==0:
wakeupPoint = 'nan'
else:
wakeupPoint = blob_hub1.iloc[0]['eventtime']
else:
k = ending.shape[0]-1
wakeupPoint = ending.iloc[k]['eventtime']
if wakeupPoint <flag:
blob_hub1 = blob_hub1[blob_hub1['eventtime']>flag]
if blob_hub1.shape[0]==0:
wakeupPoint = 'nan'
else:
wakeupPoint = blob_hub1.iloc[0]['eventtime']
print(sleep_point)
wakeup.append(wakeupPoint)
sleep.append(sleep_point)
sleep_time['sleeptime']=sleep
sleep_time['wakeupTime']=wakeup
# the below part is for upload
from azure.storage.blob import AppendBlobService
append_blob_service = AppendBlobService(account_name=account_name, account_key=account_key)
# The same containers can hold all types of blobs
container_name = 'sleepwakeuptime'
append_blob_service.create_container(container_name)
# Append blobs must be created before they are appended to
sleep_text = sleep_time.to_string()
append_blob_service.create_blob(container_name, date.today().strftime('%Y-%m-%d'))
append_blob_service.append_blob_from_text(container_name, date.today().strftime('%Y-%m-%d'), sleep_text)
#append_blob = append_blob_service.get_blob_to_text(container_name, 'myappendblob')