-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdatasets.py
406 lines (346 loc) · 19.6 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import os
import random
import numpy as np
import cv2
import torch
from torch.utils.data import Dataset
from utils import read
def random_resize(img0, imgt, img1, flow, p=0.1):
if random.uniform(0, 1) < p:
img0 = cv2.resize(img0, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
imgt = cv2.resize(imgt, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img1 = cv2.resize(img1, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
flow = cv2.resize(flow, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR) * 2.0
return img0, imgt, img1, flow
def random_crop(img0, imgt, img1, flow, crop_size=(224, 224)):
h, w = crop_size[0], crop_size[1]
ih, iw, _ = img0.shape
x = np.random.randint(0, ih-h+1)
y = np.random.randint(0, iw-w+1)
img0 = img0[x:x+h, y:y+w, :]
imgt = imgt[x:x+h, y:y+w, :]
img1 = img1[x:x+h, y:y+w, :]
flow = flow[x:x+h, y:y+w, :]
return img0, imgt, img1, flow
def random_reverse_channel(img0, imgt, img1, flow, p=0.5):
if random.uniform(0, 1) < p:
img0 = img0[:, :, ::-1]
imgt = imgt[:, :, ::-1]
img1 = img1[:, :, ::-1]
return img0, imgt, img1, flow
def random_vertical_flip(img0, imgt, img1, flow, p=0.3):
if random.uniform(0, 1) < p:
img0 = img0[::-1]
imgt = imgt[::-1]
img1 = img1[::-1]
flow = flow[::-1]
flow = np.concatenate((flow[:, :, 0:1], -flow[:, :, 1:2], flow[:, :, 2:3], -flow[:, :, 3:4]), 2)
return img0, imgt, img1, flow
def random_horizontal_flip(img0, imgt, img1, flow, p=0.5):
if random.uniform(0, 1) < p:
img0 = img0[:, ::-1]
imgt = imgt[:, ::-1]
img1 = img1[:, ::-1]
flow = flow[:, ::-1]
flow = np.concatenate((-flow[:, :, 0:1], flow[:, :, 1:2], -flow[:, :, 2:3], flow[:, :, 3:4]), 2)
return img0, imgt, img1, flow
def random_rotate(img0, imgt, img1, flow, p=0.05):
if random.uniform(0, 1) < p:
img0 = img0.transpose((1, 0, 2))
imgt = imgt.transpose((1, 0, 2))
img1 = img1.transpose((1, 0, 2))
flow = flow.transpose((1, 0, 2))
flow = np.concatenate((flow[:, :, 1:2], flow[:, :, 0:1], flow[:, :, 3:4], flow[:, :, 2:3]), 2)
return img0, imgt, img1, flow
def random_reverse_time(img0, imgt, img1, flow, p=0.5):
if random.uniform(0, 1) < p:
tmp = img1
img1 = img0
img0 = tmp
flow = np.concatenate((flow[:, :, 2:4], flow[:, :, 0:2]), 2)
return img0, imgt, img1, flow
class Vimeo90K_Train_Dataset(Dataset):
def __init__(self, dataset_dir='/home/ltkong/Datasets/Vimeo90K/vimeo_triplet', augment=True):
self.dataset_dir = dataset_dir
self.augment = augment
self.img0_list = []
self.imgt_list = []
self.img1_list = []
self.flow_t0_list = []
self.flow_t1_list = []
with open(os.path.join(dataset_dir, 'tri_trainlist.txt'), 'r') as f:
for i in f:
name = str(i).strip()
if(len(name) <= 1):
continue
self.img0_list.append(os.path.join(dataset_dir, 'sequences', name, 'im1.png'))
self.imgt_list.append(os.path.join(dataset_dir, 'sequences', name, 'im2.png'))
self.img1_list.append(os.path.join(dataset_dir, 'sequences', name, 'im3.png'))
self.flow_t0_list.append(os.path.join(dataset_dir, 'flow', name, 'flow_t0.flo'))
self.flow_t1_list.append(os.path.join(dataset_dir, 'flow', name, 'flow_t1.flo'))
def __len__(self):
return len(self.imgt_list)
def __getitem__(self, idx):
img0 = read(self.img0_list[idx])
imgt = read(self.imgt_list[idx])
img1 = read(self.img1_list[idx])
flow_t0 = read(self.flow_t0_list[idx])
flow_t1 = read(self.flow_t1_list[idx])
flow = np.concatenate((flow_t0, flow_t1), 2).astype(np.float64)
if self.augment == True:
img0, imgt, img1, flow = random_resize(img0, imgt, img1, flow, p=0.1)
img0, imgt, img1, flow = random_crop(img0, imgt, img1, flow, crop_size=(224, 224))
img0, imgt, img1, flow = random_reverse_channel(img0, imgt, img1, flow, p=0.5)
img0, imgt, img1, flow = random_vertical_flip(img0, imgt, img1, flow, p=0.3)
img0, imgt, img1, flow = random_horizontal_flip(img0, imgt, img1, flow, p=0.5)
img0, imgt, img1, flow = random_rotate(img0, imgt, img1, flow, p=0.05)
img0, imgt, img1, flow = random_reverse_time(img0, imgt, img1, flow, p=0.5)
img0 = torch.from_numpy(img0.transpose((2, 0, 1)).astype(np.float32) / 255.0)
imgt = torch.from_numpy(imgt.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img1 = torch.from_numpy(img1.transpose((2, 0, 1)).astype(np.float32) / 255.0)
flow = torch.from_numpy(flow.transpose((2, 0, 1)).astype(np.float32))
embt = torch.from_numpy(np.array(1/2).reshape(1, 1, 1).astype(np.float32))
return img0, imgt, img1, flow, embt
class Vimeo90K_Test_Dataset(Dataset):
def __init__(self, dataset_dir='/home/ltkong/Datasets/Vimeo90K/vimeo_triplet'):
self.dataset_dir = dataset_dir
self.img0_list = []
self.imgt_list = []
self.img1_list = []
self.flow_t0_list = []
self.flow_t1_list = []
with open(os.path.join(dataset_dir, 'tri_testlist.txt'), 'r') as f:
for i in f:
name = str(i).strip()
if(len(name) <= 1):
continue
self.img0_list.append(os.path.join(dataset_dir, 'sequences', name, 'im1.png'))
self.imgt_list.append(os.path.join(dataset_dir, 'sequences', name, 'im2.png'))
self.img1_list.append(os.path.join(dataset_dir, 'sequences', name, 'im3.png'))
self.flow_t0_list.append(os.path.join(dataset_dir, 'flow', name, 'flow_t0.flo'))
self.flow_t1_list.append(os.path.join(dataset_dir, 'flow', name, 'flow_t1.flo'))
def __len__(self):
return len(self.imgt_list)
def __getitem__(self, idx):
img0 = read(self.img0_list[idx])
imgt = read(self.imgt_list[idx])
img1 = read(self.img1_list[idx])
flow_t0 = read(self.flow_t0_list[idx])
flow_t1 = read(self.flow_t1_list[idx])
flow = np.concatenate((flow_t0, flow_t1), 2)
img0 = torch.from_numpy(img0.transpose((2, 0, 1)).astype(np.float32) / 255.0)
imgt = torch.from_numpy(imgt.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img1 = torch.from_numpy(img1.transpose((2, 0, 1)).astype(np.float32) / 255.0)
flow = torch.from_numpy(flow.transpose((2, 0, 1)).astype(np.float32))
embt = torch.from_numpy(np.array(1/2).reshape(1, 1, 1).astype(np.float32))
return img0, imgt, img1, flow, embt
def random_resize_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.1):
if random.uniform(0, 1) < p:
img0 = cv2.resize(img0, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img1 = cv2.resize(img1, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img2 = cv2.resize(img2, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img3 = cv2.resize(img3, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img4 = cv2.resize(img4, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img5 = cv2.resize(img5, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img6 = cv2.resize(img6, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img7 = cv2.resize(img7, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img8 = cv2.resize(img8, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
return img0, img1, img2, img3, img4, img5, img6, img7, img8
def random_crop_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, crop_size=(224, 224)):
h, w = crop_size[0], crop_size[1]
ih, iw, _ = img0.shape
x = np.random.randint(0, ih-h+1)
y = np.random.randint(0, iw-w+1)
img0 = img0[x:x+h, y:y+w, :]
img1 = img1[x:x+h, y:y+w, :]
img2 = img2[x:x+h, y:y+w, :]
img3 = img3[x:x+h, y:y+w, :]
img4 = img4[x:x+h, y:y+w, :]
img5 = img5[x:x+h, y:y+w, :]
img6 = img6[x:x+h, y:y+w, :]
img7 = img7[x:x+h, y:y+w, :]
img8 = img8[x:x+h, y:y+w, :]
return img0, img1, img2, img3, img4, img5, img6, img7, img8
def center_crop_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, crop_size=(512, 512)):
h, w = crop_size[0], crop_size[1]
ih, iw, _ = img0.shape
img0 = img0[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
img1 = img1[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
img2 = img2[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
img3 = img3[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
img4 = img4[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
img5 = img5[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
img6 = img6[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
img7 = img7[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
img8 = img8[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
return img0, img1, img2, img3, img4, img5, img6, img7, img8
def random_reverse_channel_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.5):
if random.uniform(0, 1) < p:
img0 = img0[:, :, ::-1]
img1 = img1[:, :, ::-1]
img2 = img2[:, :, ::-1]
img3 = img3[:, :, ::-1]
img4 = img4[:, :, ::-1]
img5 = img5[:, :, ::-1]
img6 = img6[:, :, ::-1]
img7 = img7[:, :, ::-1]
img8 = img8[:, :, ::-1]
return img0, img1, img2, img3, img4, img5, img6, img7, img8
def random_vertical_flip_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.3):
if random.uniform(0, 1) < p:
img0 = img0[::-1]
img1 = img1[::-1]
img2 = img2[::-1]
img3 = img3[::-1]
img4 = img4[::-1]
img5 = img5[::-1]
img6 = img6[::-1]
img7 = img7[::-1]
img8 = img8[::-1]
return img0, img1, img2, img3, img4, img5, img6, img7, img8
def random_horizontal_flip_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.5):
if random.uniform(0, 1) < p:
img0 = img0[:, ::-1]
img1 = img1[:, ::-1]
img2 = img2[:, ::-1]
img3 = img3[:, ::-1]
img4 = img4[:, ::-1]
img5 = img5[:, ::-1]
img6 = img6[:, ::-1]
img7 = img7[:, ::-1]
img8 = img8[:, ::-1]
return img0, img1, img2, img3, img4, img5, img6, img7, img8
def random_rotate_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.05):
if random.uniform(0, 1) < p:
img0 = img0.transpose((1, 0, 2))
img1 = img1.transpose((1, 0, 2))
img2 = img2.transpose((1, 0, 2))
img3 = img3.transpose((1, 0, 2))
img4 = img4.transpose((1, 0, 2))
img5 = img5.transpose((1, 0, 2))
img6 = img6.transpose((1, 0, 2))
img7 = img7.transpose((1, 0, 2))
img8 = img8.transpose((1, 0, 2))
return img0, img1, img2, img3, img4, img5, img6, img7, img8
def random_reverse_time_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.5):
if random.uniform(0, 1) < p:
return img8, img7, img6, img5, img4, img3, img2, img1, img0
else:
return img0, img1, img2, img3, img4, img5, img6, img7, img8
class GoPro_Train_Dataset(Dataset):
def __init__(self, dataset_dir='/home/ltkong/Datasets/GOPRO', interFrames=7, n_inputs=2, augment=True):
self.dataset_dir = dataset_dir
self.interFrames = interFrames
self.n_inputs = n_inputs
self.augment = augment
self.setLength = (n_inputs-1)*(interFrames+1)+1
video_list = [
'GOPR0372_07_00', 'GOPR0374_11_01', 'GOPR0378_13_00', 'GOPR0384_11_01', 'GOPR0384_11_04', 'GOPR0477_11_00', 'GOPR0868_11_02', 'GOPR0884_11_00',
'GOPR0372_07_01', 'GOPR0374_11_02', 'GOPR0379_11_00', 'GOPR0384_11_02', 'GOPR0385_11_00', 'GOPR0857_11_00', 'GOPR0871_11_01', 'GOPR0374_11_00',
'GOPR0374_11_03', 'GOPR0380_11_00', 'GOPR0384_11_03', 'GOPR0386_11_00', 'GOPR0868_11_01', 'GOPR0881_11_00']
self.frames_list = []
self.file_list = []
for video in video_list:
frames = sorted(os.listdir(os.path.join(self.dataset_dir, video)))
n_sets = (len(frames) - self.setLength)//(interFrames+1) + 1
videoInputs = [frames[(interFrames+1)*i:(interFrames+1)*i+self.setLength] for i in range(n_sets)]
videoInputs = [[os.path.join(video, f) for f in group] for group in videoInputs]
self.file_list.extend(videoInputs)
def __len__(self):
return len(self.file_list)
def __getitem__(self, idx):
imgpaths = [os.path.join(self.dataset_dir, fp) for fp in self.file_list[idx]]
pick_idxs = list(range(0, self.setLength, self.interFrames+1))
rem = self.interFrames%2
gt_idx = list(range(self.setLength//2-self.interFrames//2, self.setLength//2+self.interFrames//2+rem))
input_paths = [imgpaths[idx] for idx in pick_idxs]
gt_paths = [imgpaths[idx] for idx in gt_idx]
img0 = np.array(read(input_paths[0]))
img1 = np.array(read(gt_paths[0]))
img2 = np.array(read(gt_paths[1]))
img3 = np.array(read(gt_paths[2]))
img4 = np.array(read(gt_paths[3]))
img5 = np.array(read(gt_paths[4]))
img6 = np.array(read(gt_paths[5]))
img7 = np.array(read(gt_paths[6]))
img8 = np.array(read(input_paths[1]))
if self.augment == True:
img0, img1, img2, img3, img4, img5, img6, img7, img8 = random_resize_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.1)
img0, img1, img2, img3, img4, img5, img6, img7, img8 = random_crop_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, crop_size=(224, 224))
img0, img1, img2, img3, img4, img5, img6, img7, img8 = random_reverse_channel_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.5)
img0, img1, img2, img3, img4, img5, img6, img7, img8 = random_vertical_flip_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.3)
img0, img1, img2, img3, img4, img5, img6, img7, img8 = random_horizontal_flip_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.5)
img0, img1, img2, img3, img4, img5, img6, img7, img8 = random_rotate_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.05)
img0, img1, img2, img3, img4, img5, img6, img7, img8 = random_reverse_time_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, p=0.5)
else:
img0, img1, img2, img3, img4, img5, img6, img7, img8 = center_crop_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, crop_size=(512, 512))
img0 = torch.from_numpy(img0.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img1 = torch.from_numpy(img1.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img2 = torch.from_numpy(img2.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img3 = torch.from_numpy(img3.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img4 = torch.from_numpy(img4.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img5 = torch.from_numpy(img5.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img6 = torch.from_numpy(img6.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img7 = torch.from_numpy(img7.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img8 = torch.from_numpy(img8.transpose((2, 0, 1)).astype(np.float32) / 255.0)
emb1 = torch.from_numpy(np.array(1/8).reshape(1, 1, 1).astype(np.float32))
emb2 = torch.from_numpy(np.array(2/8).reshape(1, 1, 1).astype(np.float32))
emb3 = torch.from_numpy(np.array(3/8).reshape(1, 1, 1).astype(np.float32))
emb4 = torch.from_numpy(np.array(4/8).reshape(1, 1, 1).astype(np.float32))
emb5 = torch.from_numpy(np.array(5/8).reshape(1, 1, 1).astype(np.float32))
emb6 = torch.from_numpy(np.array(6/8).reshape(1, 1, 1).astype(np.float32))
emb7 = torch.from_numpy(np.array(7/8).reshape(1, 1, 1).astype(np.float32))
return img0, img1, img2, img3, img4, img5, img6, img7, img8, emb1, emb2, emb3, emb4, emb5, emb6, emb7
class GoPro_Test_Dataset(Dataset):
def __init__(self, dataset_dir='/home/ltkong/Datasets/GOPRO', interFrames=7, n_inputs=2):
self.dataset_dir = dataset_dir
self.interFrames = interFrames
self.n_inputs = n_inputs
self.setLength = (n_inputs-1)*(interFrames+1)+1
video_list = [
'GOPR0384_11_00', 'GOPR0385_11_01', 'GOPR0410_11_00', 'GOPR0862_11_00', 'GOPR0869_11_00', 'GOPR0881_11_01', 'GOPR0384_11_05', 'GOPR0396_11_00',
'GOPR0854_11_00', 'GOPR0868_11_00', 'GOPR0871_11_00']
self.frames_list = []
self.file_list = []
for video in video_list:
frames = sorted(os.listdir(os.path.join(self.dataset_dir, video)))
n_sets = (len(frames) - self.setLength)//(interFrames+1) + 1
videoInputs = [frames[(interFrames+1)*i:(interFrames+1)*i+self.setLength] for i in range(n_sets)]
videoInputs = [[os.path.join(video, f) for f in group] for group in videoInputs]
self.file_list.extend(videoInputs)
def __len__(self):
return len(self.file_list)
def __getitem__(self, idx):
imgpaths = [os.path.join(self.dataset_dir, fp) for fp in self.file_list[idx]]
pick_idxs = list(range(0, self.setLength, self.interFrames+1))
rem = self.interFrames%2
gt_idx = list(range(self.setLength//2-self.interFrames//2, self.setLength//2+self.interFrames//2+rem))
input_paths = [imgpaths[idx] for idx in pick_idxs]
gt_paths = [imgpaths[idx] for idx in gt_idx]
img0 = np.array(read(input_paths[0]))
img1 = np.array(read(gt_paths[0]))
img2 = np.array(read(gt_paths[1]))
img3 = np.array(read(gt_paths[2]))
img4 = np.array(read(gt_paths[3]))
img5 = np.array(read(gt_paths[4]))
img6 = np.array(read(gt_paths[5]))
img7 = np.array(read(gt_paths[6]))
img8 = np.array(read(input_paths[1]))
img0, img1, img2, img3, img4, img5, img6, img7, img8 = center_crop_8x(img0, img1, img2, img3, img4, img5, img6, img7, img8, crop_size=(512, 512))
img0 = torch.from_numpy(img0.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img1 = torch.from_numpy(img1.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img2 = torch.from_numpy(img2.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img3 = torch.from_numpy(img3.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img4 = torch.from_numpy(img4.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img5 = torch.from_numpy(img5.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img6 = torch.from_numpy(img6.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img7 = torch.from_numpy(img7.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img8 = torch.from_numpy(img8.transpose((2, 0, 1)).astype(np.float32) / 255.0)
emb1 = torch.from_numpy(np.array(1/8).reshape(1, 1, 1).astype(np.float32))
emb2 = torch.from_numpy(np.array(2/8).reshape(1, 1, 1).astype(np.float32))
emb3 = torch.from_numpy(np.array(3/8).reshape(1, 1, 1).astype(np.float32))
emb4 = torch.from_numpy(np.array(4/8).reshape(1, 1, 1).astype(np.float32))
emb5 = torch.from_numpy(np.array(5/8).reshape(1, 1, 1).astype(np.float32))
emb6 = torch.from_numpy(np.array(6/8).reshape(1, 1, 1).astype(np.float32))
emb7 = torch.from_numpy(np.array(7/8).reshape(1, 1, 1).astype(np.float32))
return img0, img1, img2, img3, img4, img5, img6, img7, img8, emb1, emb2, emb3, emb4, emb5, emb6, emb7