-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleafletShanghaiMigrantsByDistrict.R
234 lines (164 loc) · 6.74 KB
/
leafletShanghaiMigrantsByDistrict.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#install.packages("leaflet")
#install.packages("rgdal")
#install.packages("rgeos")
setwd("R_scripts/r_mapping/shanghaiR")
#load mapping and spatial data libraries
library(leaflet)
library(rgdal)
library(rgeos)
library(classInt)
library(raster)
getwd() #get current R working directory. change with setwd("C:/Users/myusername")
nClassBreaks = 6
classifierFunction = "jenks"
#read in the GIS polygon shapefile of the adm1 data. Assumes data is in directory CHN_adm_shp
boundaries <- readOGR("../CHN_adm_shp/Shanghai_AL6_edit_for_Minhang.shp", layer = "Shanghai_AL6_edit_for_Minhang", verbose = FALSE)
#Geometry is quite detailed so they can be simplified to make them display quicker
#simplifiedPolygons <- gSimplify(boundaries, 0.001, topologyPreserve=TRUE) #Creates simplified polygons
simplifiedPolygons = boundaries
chinaSPDF = SpatialPolygonsDataFrame(simplifiedPolygons, data=boundaries@data) #Need to copy the attributes from the loaded data into
simplifiedPolygons = spTransform(simplifiedPolygons, CRS("+proj=utm +zone=51 +datum=WGS84"))
chinaSPDF$areas = gArea(simplifiedPolygons,byid = TRUE)/1000000 #sqkm
#Create a map object with some background OpenStreetMap
myMap = leaflet(chinaSPDF) %>% addTiles()
#myMap = leaflet(chinaSPDF) %>% addProviderTiles(providers$CartoDB.Positron)
#Determine a variable to map. Currently this is the ID_1 column of the gis polygons that is goint to be mapped.
#Something else could be mapped by loading a table of data (e.g. migration counts), and joining to chinaSPDF using a common attribute.
#Read the csv of data to be mapped
migData = read.csv("../chinaCensusExtracts/Shanghai_migrants_by_district_merged_for_2017_osm_districts.csv", fill = TRUE)
#join (inner join) with merge
require(sp)
chinaSPDF <- merge(chinaSPDF,migData, by.x="ID", by.y="OSMID")
#Count variable
myVariableToMap = chinaSPDF@data$Number_of_migrants
#Add a normalised by area variable
chinaSPDF$migsNormalisedByArea = chinaSPDF$Number_of_migrants/chinaSPDF$areas
myVariableToMap2 = chinaSPDF$migsNormalisedByArea
#Classlify the data for choropleth mapping
palData = classIntervals(chinaSPDF$Number_of_migrants, n=nClassBreaks, style=classifierFunction)
palData2 = classIntervals(chinaSPDF$migsNormalisedByArea, n=nClassBreaks, style=classifierFunction)
#create a map palette style for the choropleth colour
#paletteColourFunction <- colorBin("YlOrRd", domain = myVariableToMap, bins = bins)
paletteColourFunction <- colorBin("Reds", domain = myVariableToMap, bins = palData$brks)
paletteColourFunction2 <- colorBin("Reds", domain = myVariableToMap2, bins = palData2$brks)
################### Map display labels ###############################
layerTitle = "Number of migrants<br>(Jenks breaks classification)"
layerTitle2 = "Number of migrants by area (sq.km)<br>(Jenks breaks classification)"
labels <- sprintf(
"%s</strong><br/>%g migrants",
chinaSPDF$Districts_and_Town, chinaSPDF$Number_of_migrants
) %>% lapply(htmltools::HTML)
labels2 <- sprintf(
"%s</strong><br/>Density: %g migrants /km<sup>2</sup><br/>Num of migrants: %s",
chinaSPDF$Districts_and_Town, chinaSPDF$migsNormalisedByArea, chinaSPDF$Number_of_migrants
) %>% lapply(htmltools::HTML)
######################## Map object creation ######################
# Put both datasets maps
myMap %>%
addProviderTiles("OpenStreetMap.BlackAndWhite") %>%
addPolygons(
fillOpacity = 0.60, smoothFactor = 0.5,
fillColor = ~paletteColourFunction(myVariableToMap),
weight = 2,
dashArray = "1",
color ="white",
group = layerTitle,
label=labels,
highlight = highlightOptions(
weight = 5,
color = "#666",
dashArray = "",
fillOpacity = 0.7,
bringToFront = TRUE),
labelOptions = labelOptions(
style = list("font-weight" = "normal", padding = "3px 8px"),
textsize = "15px",
direction = "auto")) %>%
addLegend("bottomright", pal = paletteColourFunction, values = ~myVariableToMap,
title = layerTitle,
labFormat = labelFormat(prefix = ""),
opacity = 1
)%>%
addLegend( "bottomright", pal = paletteColourFunction2, values = ~myVariableToMap2,
title = layerTitle2,
opacity = 1
) %>%
addPolygons(
fillOpacity = 0.60, smoothFactor = 0.5,
fillColor = ~paletteColourFunction2(myVariableToMap2),
weight = 2,
dashArray = "1",
color = "white",
group = layerTitle2,
label=labels2,
highlight = highlightOptions(
weight = 5,
color = "#666",
dashArray = "",
fillOpacity = 0.7,
bringToFront = TRUE),
labelOptions = labelOptions(
style = list("font-weight" = "normal", padding = "3px 8px"),
textsize = "15px",
direction = "auto")) %>%
addLayersControl(
#baseGroups = c("OSM basemap (CartoDB Positron)", "OSM basemap"),
overlayGroups = c(layerTitle, layerTitle2),
options = layersControlOptions(collapsed = FALSE)
)
#Viewer window should now display choropleth map.
myMapCounts = leaflet(chinaSPDF) %>% addTiles()
# Separate map for counts
myMapCounts %>%
addProviderTiles("OpenStreetMap.BlackAndWhite", group = "OSM basemap") %>%
addPolygons(
fillOpacity = 0.60, smoothFactor = 0.5,
fillColor = ~paletteColourFunction(myVariableToMap),
weight = 2,
color = "white",
dashArray = "1",
group = layerTitle,
label=labels,
highlight = highlightOptions(
weight = 5,
color = "#666",
dashArray = "",
fillOpacity = 0.7,
bringToFront = TRUE),
labelOptions = labelOptions(
style = list("font-weight" = "normal", padding = "3px 8px"),
textsize = "15px",
direction = "auto")) %>%
addLegend("bottomright", pal = paletteColourFunction, values = ~myVariableToMap,
title = layerTitle,
labFormat = labelFormat(prefix = ""),
opacity = 1
)
#Viewer window should now display choropleth map.
# Separate map for density
myMapDensity = leaflet(chinaSPDF) %>% addTiles()
myMapDensity %>%
addProviderTiles("OpenStreetMap.BlackAndWhite") %>%
addLegend( "bottomright", pal = paletteColourFunction2, values = ~myVariableToMap2,
title = layerTitle2,
opacity = 1
) %>%
addPolygons(
fillOpacity = 0.60, smoothFactor = 0.5,
fillColor = ~paletteColourFunction2(myVariableToMap2),
weight = 2,
dashArray = "1",
color = "white",
group = layerTitle2,
label=labels2,
highlight = highlightOptions(
weight = 5,
color = "#666",
dashArray = "",
fillOpacity = 0.7,
bringToFront = TRUE),
labelOptions = labelOptions(
style = list("font-weight" = "normal", padding = "3px 8px"),
textsize = "15px",
direction = "auto"))
#Viewer window should now display choropleth map.