-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeismicT.py
64 lines (51 loc) · 1.8 KB
/
SeismicT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import cv2
from torch.utils.data import Dataset
from torchvision import transforms as tv
from PIL import Image
class Seismic(Dataset):
def __init__(self, img_root, mask_root, x_db, transform=None):
self.img_dir = img_root
self.mask_dir = mask_root
self.X = x_db
self.transform = transform
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
img_id = self.X[idx]
img_path = self.img_dir + str(img_id) + ".png"
mask_path = self.mask_dir + str(img_id) + ".png"
img = cv2.imread(img_path)
img = cv2.resize(img, (128, 128))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask = cv2.imread(mask_path)
mask = cv2.resize(mask, (128, 128))
if self.transform is not None:
# transform image and mask
aug = self.transform(image=img, mask=mask)
img = Image.fromarray(aug['image'])
# convert to 1channel
mask = Image.fromarray(aug['mask']).convert('L')
if self.transform is None:
img = Image.fromarray(img)
# convert to 1channel
mask = Image.fromarray(mask).convert('L')
t = tv.ToTensor()
img = t(img)
mask = t(mask)
return img, mask
class SeismicMaskDS(Dataset):
def __init__(self, x_db, transform=None):
self.X = x_db
self.transform = transform
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
figs = self.X['id'].iloc[idx]
file_path = f'./train/masks/{figs}.png'
mask = cv2.imread(file_path)
#mask = self.transform(mask)
mask = cv2.resize(mask, (32, 32))
mask = Image.fromarray(mask).convert('L')
t = tv.ToTensor()
mask = t(mask)
return mask