-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataLoader.py
50 lines (39 loc) · 1.37 KB
/
dataLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib.image as mpimg
import math
from os.path import exists
TRAIN_CSV = './data/train.csv'
DEPTH_CSV = 'depths.csv'
TRAIN_IMAGE_DIR = 'D:/_phd/datasets/tgsSalt/train/images/'
TRAIN_MASK_DIR = 'D:/_phd/datasets/tgsSalt/train/masks/'
TEST_IMAGE_DIR = 'D:/_phd/datasets/tgsSalt/test/images/'
df_train = pd.read_csv(TRAIN_CSV)
df = df_train
df['salt'] = df['rle_mask'].notnull().replace([False, True], [0,1]) #0 = no_salt #1 = salt
salt = df[df['rle_mask'].notnull()]
def limites(msk):
number_of_white_pix = np.sum(msk == 255)
if (number_of_white_pix>(10201*0.1)) & (number_of_white_pix<(10201*0.9)):
result = True
else:
result = False
return result
def coverage(label):
path = TRAIN_MASK_DIR + f'{label}.png'
white_pix = -1.0
if exists(path):
mask = cv2.imread(path)
gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
white_pix = np.sum(gray == 255)
return white_pix/10201
def class_cover(val):
r = math.trunc(10*val)
return r
# a coluna coverage em todas as linhas do df recebe o resultado da função coverage(id)
df['coverage']=df['id'].map(coverage)
df['class']=df.coverage.map(class_cover)
salt=df[df['class']>0]
salt=salt[salt['class']<9]