forked from LianHaiMiao/pytorch-lesson-zh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDCGAN.py
219 lines (168 loc) · 6.97 KB
/
DCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms
from torch.utils import data
import os
from PIL import Image
from torch import optim
import torch.nn.functional as F
from torchvision.utils import save_image
# 数据:https://pan.baidu.com/s/1eSifHcA 提取码:g5qa
# 运行代码前,请先确保下载训练数据。
# 构建生成模型
class Generator(nn.Module):
def __init__(self, noise_dim=100, conv_dim=64, g_img_size=64):
super(Generator, self).__init__()
self.fc = nn.ConvTranspose2d(noise_dim, conv_dim*16, kernel_size=int(g_img_size/16), stride=1, padding=0)
self.deconv2 = nn.ConvTranspose2d(conv_dim*16, conv_dim*8, kernel_size=4, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(conv_dim * 8)
self.deconv3 = nn.ConvTranspose2d(conv_dim*8, conv_dim*4, kernel_size=4, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(conv_dim * 4)
self.deconv4 = nn.ConvTranspose2d(conv_dim*4, conv_dim*2, kernel_size=4, stride=2, padding=1)
self.bn4 = nn.BatchNorm2d(conv_dim * 2)
self.deconv5 = nn.ConvTranspose2d(conv_dim*2, 3, kernel_size=4, stride=2, padding=1)
def forward(self, x):
x = x.view(x.size(0), x.size(1), 1, 1)
A1 = self.fc(x)
A2 = F.relu(self.bn2(self.deconv2(A1)))
A3 = F.relu(self.bn3(self.deconv3(A2)))
A4 = F.relu(self.bn4(self.deconv4(A3)))
y_hat = F.tanh(self.deconv5(A4))
return y_hat
# 构建判别模型
class Discriminator(nn.Module):
def __init__(self, input_chanel=3, conv_dim=64, d_img_size=64):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(input_chanel, conv_dim * 2, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(conv_dim * 2, conv_dim * 4, kernel_size=4, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(conv_dim * 4)
self.conv3 = nn.Conv2d(conv_dim * 4, conv_dim * 8, kernel_size=4, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(conv_dim * 8)
self.conv4 = nn.Conv2d(conv_dim * 8, conv_dim * 16, kernel_size=4, stride=2, padding=1)
self.bn4 = nn.BatchNorm2d(conv_dim * 16)
self.fc = nn.Conv2d(conv_dim * 16, 1, int(d_img_size / 16), 1, 0)
def forward(self, x):
A1 = F.leaky_relu(self.conv1(x))
A2 = F.leaky_relu(self.bn2(self.conv2(A1)), 0.05)
A3 = F.leaky_relu(self.bn3(self.conv3(A2)), 0.05)
A4 = F.leaky_relu(self.bn4(self.conv4(A3)), 0.05)
y_hat = F.sigmoid(self.fc(A4).squeeze())
return y_hat
# 数据集处理
class ImageDataset(data.Dataset):
def __init__(self, path, transform=None):
"""
path 是存在图像的文件夹。
"""
self.images = list(map(lambda x: os.path.join(path, x), os.listdir(path)))
self.transform = transform
def __getitem__(self, index):
image_file = self.images[index]
image = Image.open(image_file).convert('RGB')
if self.transform is not None:
image = self.transform(image)
return image
def __len__(self):
return len(self.images)
def get_dataset(path, img_scale, batch_size):
transform = transforms.Compose([
transforms.Resize(img_scale),
# 也可以使用 Scale
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
dataset = ImageDataset(path, transform)
data_loader = data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True)
return data_loader
# 工具函数:
# 生成 噪音 z
def gen_noisy(batch_size, noisy_dim):
return torch.randn(batch_size, noisy_dim)
# tensor to variable
def to_variable(x):
x = Variable(x)
if torch.cuda.is_available():
x = x.cuda()
return x
# 这里可以定义一个 Config 类,用来保存这些超参数
class Config(object):
def __init__(self):
self.batch_size = 128
self.image_path = './faces/' # 图像数据存放的文件,如有需要请自行调整。
self.noisy_dim = 100
self.G_lr = 2*1e-6
self.D_lr = 2*1e-6
self.EPOCH = 500
self.img_scale = 64
self.k_step = 5
self.use_gpu = True
self.g_img_size = 64
self.d_img_size = 64
# 训练阶段 在正式开始训练前,我们先来看看写完的 Generator 和 Discriminator
config = Config()
G = Generator(noise_dim=config.noisy_dim, g_img_size=config.g_img_size)
if config.use_gpu:
G = G.cuda()
D = Discriminator(d_img_size=config.d_img_size)
if config.use_gpu:
D = D.cuda()
print("Generator的结构是:")
print(G)
print("Discriminator的结构是:")
print(D)
# 正式开始训练的阶段:
train_data_loader = get_dataset(config.image_path, config.img_scale, config.batch_size)
loss_fn = torch.nn.BCELoss()
g_optimizer = optim.Adam(G.parameters(), lr=config.G_lr)
d_optimizer = optim.Adam(D.parameters(), lr=config.D_lr)
for epoch in range(config.EPOCH):
g_total_loss = torch.FloatTensor([0])
d_total_loss = torch.FloatTensor([0])
count = 0
for i, data in enumerate(train_data_loader):
count += 1
true_inputs = data
images = to_variable(true_inputs)
batch_size = images.size(0)
z = to_variable(gen_noisy(batch_size, config.noisy_dim))
real_labels = to_variable(torch.ones(batch_size))
fake_labels = to_variable(torch.zeros(batch_size))
### train D ###
outputs = D(images)
d_loss_real = loss_fn(outputs, real_labels)
real_score = outputs
fake_images = G(z)
outputs = D(fake_images)
d_loss_fake = loss_fn(outputs, fake_labels)
fake_score = outputs
d_loss = d_loss_real + d_loss_fake
# count total loss
d_total_loss += d_loss.data[0]
D.zero_grad()
d_loss.backward()
d_optimizer.step()
### train G ###
z = to_variable(gen_noisy(batch_size, config.noisy_dim))
fake_images = G(z)
outputs = D(fake_images)
g_loss = loss_fn(outputs, real_labels)
g_total_loss += g_loss.data[0]
G.zero_grad()
g_loss.backward()
g_optimizer.step()
if (i + 1) % 150 == 0:
print('Epoch [%d/%d], Step[%d/%d], d_loss: %.4f, '
'g_loss: %.4f, D(x): %.2f, D(G(z)): %.2f'
% (epoch+1, config.EPOCH, i + 1, count, d_loss.data[0], g_loss.data[0],
real_score.data.mean(), fake_score.data.mean()))
print('Epoch [%d/%d]'% (epoch, config.EPOCH))
print('D 的 total loss', d_total_loss / count)
print('G 的 total loss', g_total_loss / count)
# Save real images
fake_images = fake_images.view(fake_images.size(0), 3, 64, 64)
# 注意 这里需要创建 test_DCGAN 文件夹,否则会报错
save_image(fake_images.data, './test_DCGAN/fake_images-%d.png' % (epoch + 1))