forked from tensorfly-gpu/aichess
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
218 lines (192 loc) · 8.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""使用收集到数据进行训练"""
import random
from collections import defaultdict, deque
import numpy as np
import pickle
import time
import zip_array
from config import CONFIG
from game import Game, Board
from mcts import MCTSPlayer
from mcts_pure import MCTS_Pure
if CONFIG['use_redis']:
import my_redis, redis
import zip_array
if CONFIG['use_frame'] == 'paddle':
from paddle_net import PolicyValueNet
elif CONFIG['use_frame'] == 'pytorch':
from pytorch_net import PolicyValueNet
else:
print('暂不支持您选择的框架')
# 定义整个训练流程
class TrainPipeline:
def __init__(self, init_model=None):
# 训练参数
self.board = Board()
self.game = Game(self.board)
self.n_playout = CONFIG['play_out']
self.c_puct = CONFIG['c_puct']
self.learn_rate = 1e-3
self.lr_multiplier = 1 # 基于KL自适应的调整学习率
self.temp = 1.0
self.batch_size = CONFIG['batch_size'] # 训练的batch大小
self.epochs = CONFIG['epochs'] # 每次更新的train_step数量
self.kl_targ = CONFIG['kl_targ'] # kl散度控制
self.check_freq = 100 # 保存模型的频率
self.game_batch_num = CONFIG['game_batch_num'] # 训练更新的次数
self.best_win_ratio = 0.0
self.pure_mcts_playout_num = 500
if CONFIG['use_redis']:
self.redis_cli = my_redis.get_redis_cli()
self.buffer_size = maxlen=CONFIG['buffer_size']
self.data_buffer = deque(maxlen=self.buffer_size)
if init_model:
try:
self.policy_value_net = PolicyValueNet(model_file=init_model)
print('已加载上次最终模型')
except:
# 从零开始训练
print('模型路径不存在,从零开始训练')
self.policy_value_net = PolicyValueNet()
else:
print('从零开始训练')
self.policy_value_net = PolicyValueNet()
def policy_evaluate(self, n_games=10):
"""
Evaluate the trained policy by playing against the pure MCTS player
Note: this is only for monitoring the progress of training
"""
current_mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn,
c_puct=self.c_puct,
n_playout=self.n_playout)
pure_mcts_player = MCTS_Pure(c_puct=5,
n_playout=self.pure_mcts_playout_num)
win_cnt = defaultdict(int)
for i in range(n_games):
winner = self.game.start_play(current_mcts_player,
pure_mcts_player,
start_player=i % 2 + 1,
is_shown=1)
win_cnt[winner] += 1
win_ratio = 1.0*(win_cnt[1] + 0.5*win_cnt[-1]) / n_games
print("num_playouts:{}, win: {}, lose: {}, tie:{}".format(
self.pure_mcts_playout_num,
win_cnt[1], win_cnt[2], win_cnt[-1]))
return win_ratio
def policy_updata(self):
"""更新策略价值网络"""
mini_batch = random.sample(self.data_buffer, self.batch_size)
# print(mini_batch[0][1],mini_batch[1][1])
mini_batch = [zip_array.recovery_state_mcts_prob(data) for data in mini_batch]
state_batch = [data[0] for data in mini_batch]
state_batch = np.array(state_batch).astype('float32')
mcts_probs_batch = [data[1] for data in mini_batch]
mcts_probs_batch = np.array(mcts_probs_batch).astype('float32')
winner_batch = [data[2] for data in mini_batch]
winner_batch = np.array(winner_batch).astype('float32')
# 旧的策略,旧的价值函数
old_probs, old_v = self.policy_value_net.policy_value(state_batch)
for i in range(self.epochs):
loss, entropy = self.policy_value_net.train_step(
state_batch,
mcts_probs_batch,
winner_batch,
self.learn_rate * self.lr_multiplier
)
# 新的策略,新的价值函数
new_probs, new_v = self.policy_value_net.policy_value(state_batch)
kl = np.mean(np.sum(old_probs * (
np.log(old_probs + 1e-10) - np.log(new_probs + 1e-10)),
axis=1))
if kl > self.kl_targ * 4: # 如果KL散度很差,则提前终止
break
# 自适应调整学习率
if kl > self.kl_targ * 2 and self.lr_multiplier > 0.1:
self.lr_multiplier /= 1.5
elif kl < self.kl_targ / 2 and self.lr_multiplier < 10:
self.lr_multiplier *= 1.5
# print(old_v.flatten(),new_v.flatten())
explained_var_old = (1 -
np.var(np.array(winner_batch) - old_v.flatten()) /
np.var(np.array(winner_batch)))
explained_var_new = (1 -
np.var(np.array(winner_batch) - new_v.flatten()) /
np.var(np.array(winner_batch)))
print(("kl:{:.5f},"
"lr_multiplier:{:.3f},"
"loss:{},"
"entropy:{},"
"explained_var_old:{:.9f},"
"explained_var_new:{:.9f}"
).format(kl,
self.lr_multiplier,
loss,
entropy,
explained_var_old,
explained_var_new))
return loss, entropy
def run(self):
"""开始训练"""
try:
for i in range(self.game_batch_num):
if not CONFIG['use_redis']:
while True:
try:
with open(CONFIG['train_data_buffer_path'], 'rb') as data_dict:
data_file = pickle.load(data_dict)
self.data_buffer = data_file['data_buffer']
self.iters = data_file['iters']
del data_file
print('已载入数据')
break
except:
time.sleep(30)
else:
while True:
try:
l = len(self.data_buffer)
data = my_redis.get_list_range(self.redis_cli,'train_data_buffer', l if l == 0 else l - 1,-1)
self.data_buffer.extend(data)
self.iters = self.redis_cli.get('iters')
if self.redis_cli.llen('train_data_buffer') > self.buffer_size:
self.redis_cli.lpop('train_data_buffer',self.buffer_size/10)
break
except:
time.sleep(5)
print('step i {}: '.format(self.iters))
if len(self.data_buffer) > self.batch_size:
loss, entropy = self.policy_updata()
# 保存模型
if CONFIG['use_frame'] == 'paddle':
self.policy_value_net.save_model(CONFIG['paddle_model_path'])
elif CONFIG['use_frame'] == 'pytorch':
self.policy_value_net.save_model(CONFIG['pytorch_model_path'])
else:
print('不支持所选框架')
time.sleep(CONFIG['train_update_interval']) # 每10分钟更新一次模型
if (i + 1) % self.check_freq == 0:
# win_ratio = self.policy_evaluate()
# print("current self-play batch: {},win_ratio: {}".format(i + 1, win_ratio))
# self.policy_value_net.save_model('./current_policy.model')
# if win_ratio > self.best_win_ratio:
# print("New best policy!!!!!!!!")
# self.best_win_ratio = win_ratio
# # update the best_policy
# self.policy_value_net.save_model('./best_policy.model')
# if (self.best_win_ratio == 1.0 and
# self.pure_mcts_playout_num < 5000):
# self.pure_mcts_playout_num += 1000
# self.best_win_ratio = 0.0
print("current self-play batch: {}".format(i + 1))
self.policy_value_net.save_model('models/current_policy_batch{}.model'.format(i + 1))
except KeyboardInterrupt:
print('\n\rquit')
if CONFIG['use_frame'] == 'paddle':
training_pipeline = TrainPipeline(init_model='current_policy.model')
training_pipeline.run()
elif CONFIG['use_frame'] == 'pytorch':
training_pipeline = TrainPipeline(init_model='current_policy.pkl')
training_pipeline.run()
else:
print('暂不支持您选择的框架')
print('训练结束')