-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
275 lines (209 loc) · 11.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import tensorflow as tf
import numpy as np
import cv2
import sys
import os
import datetime
from time import sleep
import threading
import json
from random import sample
class FitCheckpoint(object):
def __init__(self, fit_params, fit_progress):
self.__fit_params = fit_params
self.__fit_progress = fit_progress
@property
def fit_params(self):
return self.__fit_params
@property
def fit_progress(self):
return self.__fit_progress
def save(self, path):
if not os.path.isdir(path):
os.mkdir(path)
with open(os.path.join(path, 'fit_params.json'), 'w') as fit_params_file:
json.dump(self.__fit_params, fit_params_file)
with open(os.path.join(path, 'fit_progress.json'), 'w') as fit_progress_file:
json.dump(self.__fit_progress, fit_progress_file)
@classmethod
def load(self, path):
with open(os.path.join(path, 'fit_params.json'), 'r') as fit_params_file:
fit_params = json.load(fit_params_file)
with open(os.path.join(path, 'fit_progress.json'), 'r') as fit_progress_file:
fit_progress = json.load(fit_progress_file)
return FitCheckpoint(fit_params, fit_progress)
class ImageGenerator(object):
def __init__(self, images_folder_path, initial_images_size=4, batch_size=32, image_channels=3, fade=False, preload_images=True, preload_images_size=None):
self.__images_folder_path = images_folder_path
self.__images_size = initial_images_size
self.__batch_size = batch_size
self.__image_channels = image_channels
self.__fade_override = fade
self.__fade = False
self.__alpha = 0.0
self.__filenames = []
self.__cached_bank = 0
self.__cached_batch = [None, None]
self.__cached_size = [0, 0]
self.__cached_ready = [True, True]
self.__loaded_images = None
self.__loaded_images_size = 0
for _, _, fnames in os.walk(self.__images_folder_path):
for fname in fnames:
if fname.split('.')[-1] in ('jpg', 'jpeg'):
self.__filenames.append(fname)
break
if preload_images:
self.__loaded_images = []
for fname in self.__filenames:
img = cv2.imread(os.path.join(self.__images_folder_path, fname))[:,:,::-1]
if preload_images_size is not None:
img = cv2.resize(img, (preload_images_size,)*2)
self.__loaded_images.append(img)
print(f'Loaded {len(self.__filenames)} images.')
@property
def batch_size(self):
return self.__batch_size
def set_images_size(self, size):
self.__images_size = size
def set_fade(self, fade):
self.__fade = fade
def set_fade_alpha(self, alpha):
self.__alpha = alpha
def get_batch(self):
while not self.__cached_ready[self.__cached_bank]:
sleep(.01)
result = self.__cached_batch[self.__cached_bank]
result_size = self.__cached_size[self.__cached_bank]
self.__cached_bank ^= 1
self.__cached_ready[self.__cached_bank] = False
prepare_thread = threading.Thread(target=self.__prepare_cached_batch)
prepare_thread.start()
if result_size != self.__images_size:
# wrong size
return self.get_batch()
return result
def __prepare_cached_batch(self):
img_size = self.__images_size
result = np.zeros((self.__batch_size, img_size, img_size, self.__image_channels))
images = None
fnames = None
if self.__loaded_images is not None:
images = sample(self.__loaded_images, self.__batch_size)
else:
fnames = sample(self.__filenames, self.__batch_size)
for i in range(self.__batch_size):
img = None
if images is not None:
img = images[i]
elif fnames is not None:
img = cv2.imread(os.path.join(self.__images_folder_path, fnames[i]))[:,:,::-1]
else:
# should not happen
sys.exit(1)
min_size = min(img.shape[:2])
img = img[(img.shape[0] - min_size)//2:(img.shape[0] + min_size)//2,
(img.shape[1] - min_size)//2:(img.shape[1] + min_size)//2]
img = cv2.resize(img, (img_size,)*2).astype(np.float32)
img -= img.min()
img /= (img.max() + 1e-9)
# [0, 1] -> [-1, 1]
img *= 2.
img -= 1.
if len(img.shape) == 2:
img = img[:,:,np.newaxis]
if self.__fade_override and self.__fade:
img_downsized = cv2.resize(img, (img_size//2,)*2)
img_downsized = img_downsized.repeat(2, axis = 0).repeat(2, axis = 1)
img = img*self.__alpha + img_downsized*(1.0 - self.__alpha)
result[i,] = img[:,:,:self.__image_channels]
self.__cached_batch[self.__cached_bank] = result
self.__cached_size[self.__cached_bank] = img_size
self.__cached_ready[self.__cached_bank] = True
class TensorBoardCallback(object):
def __init__(self, logdir : str, model = None,
tensorboard_metrics_save_interval : int =20, tensorboard_generator_preview_save_interval : int =100,
image_generator_preview_save_interval : int = 1000, frame_generator_preview_save_interval : int = 100,
use_tensorboard : bool =True):
self.__datetime_str = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
try:
os.mkdir(os.path.join('gen', self.__datetime_str))
except:
pass
self.__logdir = os.path.join(logdir, self.__datetime_str)
self.__model = model
self.__tensorboard_metrics_save_interval = tensorboard_metrics_save_interval
self.__tensorboard_generator_preview_save_interval = tensorboard_generator_preview_save_interval
self.__image_generator_preview_save_interval = image_generator_preview_save_interval
self.__frame_generator_preview_save_interval = frame_generator_preview_save_interval
self.__use_tensorboard = use_tensorboard
self.__generator_preview_vid_latent = model.sample_latent_space(1)
self.__generator_preview_vid = cv2.VideoWriter(os.path.join('./gen', self.__datetime_str, 'generator_preview.mp4'), 0x7634706d, 60.0, (512, 512))
self.__total_epochs = 0
self.__writers = {}
self.__metrics_interval = {}
self.__metrics_interval_count = 0
if model is not None:
self.__preview_latent_noise = model.sample_latent_space(4)
def on_batch_end(self, epoch : int, step : int, fade : bool, metrics_dict : dict):
self.__total_epochs += 1
if self.__use_tensorboard:
for metric_name, metric_dict in metrics_dict.items():
if metric_name not in self.__metrics_interval.keys():
self.__metrics_interval[metric_name] = {}
for metric_subname, metric_value in metric_dict.items():
if metric_subname not in self.__metrics_interval[metric_name].keys():
self.__metrics_interval[metric_name][metric_subname] = .0
self.__metrics_interval[metric_name][metric_subname] += metric_value
self.__metrics_interval_count += 1
if self.__total_epochs % self.__tensorboard_metrics_save_interval == 0:
self.__write_metrics()
self.__metrics_interval_count = 0
self.__metrics_interval = {}
if self.__total_epochs % self.__tensorboard_generator_preview_save_interval == 0:
self.__write_generator_preview(step, fade)
if self.__total_epochs % self.__frame_generator_preview_save_interval == 0:
frame = self.__model.generator[step][int(fade)].predict(self.__generator_preview_vid_latent)[0]
# [-1., 1.] -> [0, 255]
frame = np.clip((frame + 1.)*127.5, 0, 255).astype(np.uint8)
frame = cv2.resize(frame, (512, 512), interpolation=cv2.INTER_NEAREST)
if len(frame.shape) == 2:
frame = frame[:,:,np.newaxis]
if frame.shape[2] == 1:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
self.__generator_preview_vid.write(frame[:,:,::-1])
if self.__total_epochs % self.__image_generator_preview_save_interval == 0:
frame = self.__model.generator[step][int(fade)].predict(self.__model.sample_latent_space(1))[0]
# [-1., 1.] -> [0, 255]
frame = np.clip((frame + 1.)*127.5, 0, 255).astype(np.uint8)
frame = cv2.resize(frame, (512, 512), interpolation=cv2.INTER_NEAREST)
if len(frame.shape) == 2:
frame = frame[:,:,np.newaxis]
if frame.shape[2] == 1:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
cv2.imwrite(os.path.join('./gen', self.__datetime_str , f'{2*step - int(fade):03d}_{epoch:06d}.jpg'), frame[:,:,::-1])
def on_epoch_end(self, step : int, fade : bool):
self.__model.generator[step][int(fade)].save(f'./model/generator_cats_{step}_{int(fade)}.h5')
def on_fit_end(self):
self.__generator_preview_vid.release()
for _, writer in self.__writers.items():
writer.close()
self.__writers = {}
def __write_metrics(self):
for metric_name, metric_dict in self.__metrics_interval.items():
for loss_name, loss_value in metric_dict.items():
if os.path.join(self.__logdir, loss_name) not in self.__writers.keys():
writer = tf.summary.create_file_writer(os.path.join(self.__logdir, loss_name))
self.__writers[os.path.join(self.__logdir, loss_name)] = writer
with self.__writers[os.path.join(self.__logdir, loss_name)].as_default():
tf.summary.scalar(metric_name, loss_value/self.__metrics_interval_count, step=self.__total_epochs)
def __write_generator_preview(self, step : int, fade : bool):
if os.path.join(self.__logdir, 'model') not in self.__writers.keys():
writer = tf.summary.create_file_writer(os.path.join(self.__logdir, 'model'))
self.__writers[os.path.join(self.__logdir, 'model')] = writer
with self.__writers[os.path.join(self.__logdir, 'model')].as_default():
preview_generated_images = self.__model.generator[step][fade].predict(self.__preview_latent_noise)
tf.summary.image('Generator preview', preview_generated_images[:4,], step=self.__total_epochs, max_outputs=4)
def __del__(self):
for _, writer in self.__writers.items():
writer.close()